

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A **CRC Industries (CRC Industries New Zealand)**

Chemwatch Hazard Alert Code: 2

Issue Date: 10/03/2023 Print Date: 22/11/2023 L.GHS.AUS.EN.E

Chemwatch: 5295-84 Version No: 5.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	CRC(NZ) 121 Fibreglass Epoxy Repair System Part A
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains bisphenol A diglycidyl ether resin, solid)
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Resin component for two part epoxy adhesive.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	CRC Industries (CRC Industries New Zealand)	
Address	10 Highbrook Drive East Tamaki Auckland New Zealand	
Telephone	+64 9 272 2700	
Fax	+64 9 274 9696	
Website	www.crc.co.nz	
Email	info.nz@crc.co.nz	

Emergency telephone number

Association / Organisation	CRC Industries (CRC Industries New Zealand)	
Emergency telephone numbers	Poisons Centre 0800 POISON (0800 764 766)	
Other emergency telephone numbers	111 (NZ Emergency Services)	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5	
Classification [1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Hazardous to the Aquatic Environment Long-Term Hazard Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word

Warning

Hazard statement(s)

H315	Causes skin irritation.	
H317	May cause an allergic skin reaction.	
H319	Causes serious eye irritation.	
H411	Toxic to aquatic life with long lasting effects.	

Page 2 of 11

Chemwatch: **5295-84**Part Number:
Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

P280	/ear protective gloves, protective clothing, eye protection and face protection.	
P261	Avoid breathing dust/fumes.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P305+P351+P338	N EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
P391	Collect spillage.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
25068-38-6	>60	bisphenol A diglycidyl ether resin, solid
Legend:	Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

	-
Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ► Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- ► Water spray or fog Large fires only.

Do not use water jets.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Page **3** of **11**

Chemwatch: **5295-84**Part Number:
Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) aldehydes other pyrolysis products typical of burning organic material.
HAZCHEM	2Z

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Environmental hazard - contain spillage. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water.
Major Spills	Environmental hazard - contain spillage. Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

► Metal can or drum

Chemwatch: 5295-84 Version No: 5.1

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: 10/03/2023 Print Date: 22/11/2023

- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- Avoid reaction with amines, mercaptans, strong acids and oxidising agents
- Avoid cross contamination between the two liquid parts of product (kit).
- If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur.
- ► This excess heat may generate toxic vapour

Storage incompatibility

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
bisphenol A diglycidyl ether resin, solid	90 mg/m3	990 mg/m3	5,900 mg/m3
bisphenol A diglycidyl ether resin, solid	30 mg/m3	330 mg/m3	2,000 mg/m3

Ingredient	Original IDLH	Revised IDLH
bisphenol A diglycidyl ether resin, solid	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
bisphenol A diglycidyl ether resin, solid	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, sp drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	oray 0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	e 1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zon very high rapid air motion).	e of 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity

Chemwatch: 5295-84 Version No: 5.1

Page 5 of 11

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: 10/03/2023 Print Date: 22/11/2023

3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted. accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

Safety glasses with side shields.

Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times ,of:

- · Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- · Butyl Rubber ranges from excellent to good
- · Nitrile Butyl Rubber (NBR) from excellent to fair.
- · Neoprene from excellent to fair
- · Polyvinyl (PVC) from excellent to poor

Hands/feet protection

- As defined in ASTM F-739-96 · Excellent breakthrough time > 480 min
- · Good breakthrough time > 20 min
- · Fair breakthrough time < 20 min
- · Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

· DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).

· DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream
- ► Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Page 6 of 11

Chemwatch: **5295-84**Part Number:
Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

Appearance	White paste with mild odour; insoluble in water.		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups
Skin Contact	The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days. Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling. In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Chemwatch: **5295-84** Page **7** of **11**

Version No: 5.1

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Harmful: danger of serious damage to health by prolonged exposure through inhalation.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests

Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is "not classifiable as to its carcinogenicity to humans". Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans.

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A	TOXICITY Not Available	IRRITATION Not Available	
bisphenol A diglycidyl ether resin, solid	TOXICITY dermal (rat) LD50: >1200 mg/kg ^[2] Oral (Mouse) LD50; >500 mg/kg ^[2]	IRRITATION Not Available	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

CAUTION: Epoxy resin products may contain sensitising glycidyl ethers, even when these are not mentioned in the information given for the product. The likely occurrence of these is greatly reduced in solid grades of the resin.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics.

Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated activity. None of the BPs induced AR-mediated activity.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

egend: X – Data either not available or does not fill the criteria for classification

— Data available to make classification

SECTION 12 Ecological information

BISPHENOL A DIGLYCIDYL

ETHER RESIN, SOLID

Toxicity

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available

Version No: 5.1

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: 10/03/2023 Print Date: 22/11/2023

bisphenol A diglycidyl ether resin, solid

Endpoint	Test Duration (hr)	Species	Value	Source
EC50	48h	Crustacea	~2mg/l	2
EC50(ECx)	24h	Crustacea	3mg/l	Not Available
LC50	96h	Fish	2.4mg/l	Not Available

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A diglycidyl ether resin, solid	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A diglycidyl ether resin, solid	LOW (LogKOW = 2.6835)

Mobility in soil

Ingredient	Mobility
bisphenol A diglycidyl ether resin, solid	LOW (KOC = 51.43)

SECTION 13 Disposal considerations

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains. Product / Packaging disposal
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - ▶ Where in doubt contact the responsible authority.
 - ▶ Recycle wherever possible or consult manufacturer for recycling options.
 - Consult State Land Waste Authority for disposal.
 - Bury or incinerate residue at an approved site.
 - Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM 2Z

Land transport (ADG)

14.1. UN number or ID number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	Class Subsidiary Hazard	9 Not Applicable	
14.4. Packing group	III		

Chemwatch: **5295-84** Page **9** of **11**

Part Number: Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

14.5. Environmental hazard Environmentally hazardous

14.6. Special precautions for user

Special provisions 274 331 335 375 AU01

Limited quantity 5 kg

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082

are not subject to this Code when transported by road or rail in;

- (a) packagings;
- (b) IBCs; or
- (c) any other receptacle not exceeding 500 kg(L).
- Australian Special Provisions (SP AU01) ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

14.1. UN number	3077			
14.2. UN proper shipping name	Environmentally hazardous substance, solid, n.o.s. (contains bisphenol A diglycidyl ether resin, solid)			
14.3. Transport hazard class(es)	ICAO/IATA Class 9 ICAO / IATA Subsidiary Hazard Not Applicable ERG Code 9L			
14.4. Packing group				
14.5. Environmental hazard	Environmentally hazardous			
	Special provisions		A97 A158 A179 A197 A215	
	Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack		956 400 kg	
14.6. Special precautions for	Passenger and Cargo Packing Instructions		956	
user	Passenger and Cargo Maximum Qty / Pack		400 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y956	
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G	

Sea transport (IMDG-Code / GGVSee)

· ` `	•		
14.1. UN number	3077		
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains bisphenol A diglycidyl ether resin, solid)		
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subsidiary Hazard Not Applicable		
14.4. Packing group	III		
14.5 Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	Special provisions		

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

1-11/12: Transport in bank in acc	Talle Traile port in bank in accordance with mark of and the meso code			
Product name	Group			
bisphenol A diglycidyl ether resin, solid	Not Available			

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
bisphenol A diglycidyl ether resin, solid	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

bisphenol A diglycidyl ether resin, solid is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

 $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5}$

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Chemwatch: **5295-84**Part Number:
Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (bisphenol A diglycidyl ether resin, solid)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	10/03/2023
Initial Date	27/02/2018

SDS Version Summary

Version	Date of Update	Sections Updated	
4.1	20/08/2021	Classification change due to full database hazard calculation/update.	
5.1	10/03/2023	Classification change due to full database hazard calculation/update.	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ► IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ► STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit,
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- ► DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ► EINECS: European INventory of Existing Commercial chemical Substances
- ► ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ► ENCS: Existing and New Chemical Substances Inventory
- ► KECI: Korea Existing Chemicals Inventory
- ► NZIoC: New Zealand Inventory of Chemicals
- ► PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ► NCI: National Chemical Inventory

Chemwatch: **5295-84** Page **11** of **11**

Part Number: Version No: **5.1**

CRC(NZ) 121 Fibreglass Epoxy Repair System Part A

Issue Date: **10/03/2023**Print Date: **22/11/2023**

▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

121 Fibreglass Epoxy Repair System Part B CRC Industries (CRC Industries New Zealand)

Chemwatch: 5678-84 Version No: 4.1

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 3

Issue Date: **05/06/2024** Print Date: **06/06/2024** L.GHS.NZL.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier					
Product name	121 Fibreglass Epoxy Repair System Part B				
Chemical Name	Not Applicable				
Synonyms	4420				
Proper shipping name	CORROSIVE LIQUID, N.O.S. (contains tall oil/ tetraethylenepentamine polyamides, tetraethylenepentamine linear, cyclic and branched and polyethylene polyamines)				
Chemical formula	Not Applicable				
Other means of identification	Not Available				
Relevant identified uses of the	Relevant identified uses of the substance or mixture and uses advised against				
Relevant identified uses	Curing agent for two component epoxy mortar. Use according to manufacturer's directions.				
Details of the manufacturer or	supplier of the safety data sheet				
Registered company name	CRC Industries (CRC Industries New Zealand)				
Address	10 Highbrook Drive East Tamaki Auckland New Zealand				
Telephone	+64 9 272 2700				
Fax	+64 9 274 9696				
Website	www.crc.co.nz				
Email	info.nz@crc.co.nz				

Emergency telephone number

Association / Organisation	CRC Industries (CRC Industries New Zealand)	
Emergency telephone numbers	NZ Poisons Centre 0800 POISON (0800 764 766)	
Other emergency telephone numbers	111 (NZ Emergency Services)	

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

Chemwatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	2		0 = Minimum
Body Contact	3		1 = Low
Reactivity	2		2 = Moderate
Chronic	3		3 = High 4 = Extreme

Classification [1]	Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Reproductive Toxicity Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2
Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/20	
Determined by Chemwatch using GHS/HSNO criteria	8.1A, 6.1D (oral), 8.2B, 8.3A, 6.5B (contact), 6.8A, 9.1B

Label elements

Chemwatch: **5678-84**Part Number: Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

Hazard pictogram(s)

Signal word

Dange

Hazard statement(s)

H290	May be corrosive to metals.		
H302	Harmful if swallowed.		
H314	Causes severe skin burns and eye damage.		
H317	May cause an allergic skin reaction.		
H360	May damage fertility or the unborn child.		
H411	Toxic to aquatic life with long lasting effects.		

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.		
P260	Do not breathe mist/vapours/spray.		
P264	Wash all exposed external body areas thoroughly after handling.		
P280	Vear protective gloves, protective clothing, eye protection and face protection.		
P234	Keep only in original packaging.		
P270	Do not eat, drink or smoke when using this product.		
P273	Avoid release to the environment.		
P272	Contaminated work clothing should not be allowed out of the workplace.		

Precautionary statement(s) Response

CE VOMITING (if conscious). ver]. d easy to do. Continue rinsing.			
•			
d easy to do. Continue rinsing.			
Wash contaminated clothing before reuse.			
If skin irritation or rash occurs: Get medical advice/attention.			
Collect spillage.			
IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
IF INHALED: Remove person to fresh air and keep comfortable for breathing.			

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

wiixtures				
CAS No	%[weight]	Name		
68131-73-7	1-10	polyethylene polyamines		
100-51-6	1-10	<u>benzyl</u> alcohol		
68413-28-5	1-10	cashew nut liquid/ formaldehyde/ ethylenediamine polymer		
26761-45-5	1-10	glycidyl neodecanoate		
1226892-45-0	3.7	tall oil/ tetraethylenepentamine polyamides		
109-55-7	<1	3-dimethylaminopropylamine		
90-72-2	<1	2.4.6-tris[(dimethylamino)methyl]phenol		
25068-38-6	<1	bisphenol A/ diglycidyl ether resin, liquid		
90640-66-7	<1	tetraethylenepentamine linear, cyclic and branched		
Logond	1 Classified by Chemwat	ich: 2. Classification drawn from CCID EDA N.7: 2. Classification drawn from Population (ELI) No. 1279/2008 - Appoy		

Legend

1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

Chemwatch: 5678-84 Page 3 of 25

Part Number: Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

SECTION 4 First aid measures

Description of first aid measur	es
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

For acute or short-term repeated exposures to highly alkaline materials

- ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated
- * Activated charcoal does not absorb alkali
- * Gastric lavage should not be used

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

Clinical experience of benzyl alcohol poisoning is generally confined to premature neonates in receipt of preserved intravenous salines.

- Metabolic acidosis, bradycardia, skin breakdown, hypotonia, hepatorenal failure, hypotension and cardiovascular collapse are characteristic.
- ▶ High urine benzoate and hippuric acid as well as elevated serum benzoic acid levels are found.
- The so-called "gasping syndrome describes the progressive neurological deterioration of poisoned neonates.
- Management is essentially supportive.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Foam.
- Dry chemical powder.
- BCF (where regulations permit)
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot

Chemwatch: 5678-84 Page 4 of 25 Issue Date: 05/06/2024

Part Number: Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

Print Date: 06/06/2024

▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. • Equipment should be thoroughly decontaminated after use. Combustible.

Slight fire hazard when exposed to heat or flame.

▶ Heating may cause expansion or decomposition leading to violent rupture of containers.

▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

May emit acrid smoke.

Mists containing combustible materials may be explosive.

Combustion products include:

carbon dioxide (CO2)

aldehydes

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

May emit corrosive fumes

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning un

Methods and material for conta	annient and cleaning up
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

▶ DO NOT allow clothing wet with material to stay in contact with skin

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate

- which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area.
- Avoid contact with incompatible materials. ▶ When handling, **DO NOT** eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice

Avoid contact with moisture.

- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Safe handling

▶ DO NOT store near acids, or oxidising agents

- No smoking, naked lights, heat or ignition sources.
- Store in original containers.
- Keep containers securely sealed
- No smoking, naked lights or ignition sources
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.

Page **5** of **25**

Chemwatch: **5678-84**Part Number:
Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- ▶ Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

 Removable head packaging;
 - Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

▶ Avoid reaction with oxidising agents

X — Must not be stored together

0 — May be stored together with specific preventions

May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	bisphenol A/ diglycidyl ether resin, liquid	Inhalable dust (not otherwise classified)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	bisphenol A/ diglycidyl ether resin, liquid	Respirable dust (not otherwise classified)	3 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
benzyl alcohol	30 ppm	52 ppm	740 ppm
3-dimethylaminopropylamine	1.2 ppm	13 ppm	89 ppm
2,4,6- tris[(dimethylamino)methyl]phenol	6.5 mg/m3	72 mg/m3	430 mg/m3
bisphenol A/ diglycidyl ether resin, liquid	90 mg/m3	990 mg/m3	5,900 mg/m3

Ingredient	Original IDLH	Revised IDLH
polyethylene polyamines	Not Available	Not Available
benzyl alcohol	Not Available	Not Available
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available	Not Available
glycidyl neodecanoate	Not Available	Not Available
tall oil/ tetraethylenepentamine polyamides	Not Available	Not Available
3-dimethylaminopropylamine	Not Available	Not Available
2,4,6- tris[(dimethylamino)methyl]phenol	Not Available	Not Available
bisphenol A/ diglycidyl ether resin, liquid	Not Available	Not Available
tetraethylenepentamine linear, cyclic and branched	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
polyethylene polyamines	D	> 0.1 to ≤ 1 ppm
benzyl alcohol	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

Chemwatch: 5678-84

Part Number: Version No: 4.1

Page 6 of 25 121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

Air Speed

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	E	≤ 0.01 mg/m³
glycidyl neodecanoate	E	≤ 0.1 ppm
tall oil/ tetraethylenepentamine polyamides	E	≤ 0.1 ppm
3-dimethylaminopropylamine	Е	≤ 0.1 ppm
2,4,6- tris[(dimethylamino)methyl]phenol	С	> 1 to ≤ 10 parts per million (ppm)
tetraethylenepentamine linear, cyclic and branched	D	> 0.1 to ≤ 1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant.	All Speed.
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields. Eye and face protection
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

▶ Elbow length PVC gloves

- NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
 - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Chemwatch: 5678-84 Part Number:

Version No: 4.1

Page 7 of 25 121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

· Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as: • Excellent when breakthrough time > 480 min

- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons.

- The performance, based on breakthrough times ,of: Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butyl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair
- · Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96
- · Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- Fair breakthrough time < 20 min

· Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).

DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower

chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

Body protection

See Other protection below

Other protection

- Overalls
- PVC Apron
- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computeraenerated selection:

121 Fibreglass Epoxy Repair System Part B

Material	CPI
BUTYL	A
VITON	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

cartridge respirators is considered appropriate.
 Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

76ak-p()

SECTION 9 Physical and chemical properties

Version No: 4.1

Information on basic physical and chemical properties			
Appearance	Dark grey paste with very low odour; partially mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	2
Filysical state	Liquid	, , ,	2
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Causes burns.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material can produce chemical burns following direct contact with the skin. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
Еуе	When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.
Chronic	Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further

Chemwatch: 5678-84

questioned or are under review.

Version No: 4.1

Page 9 of 25 121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Cyclic ethers, including tetrahydrofuran, furan and 1,4-dioxane, produce neoplasms and carcinomas in experimental animals, typically of the liver; other target organs include the adrenal gland, nasal cavity and gall-bladder. 1,4-Dioxane was a promoter in a two-stage skin carcinogenic study in mice. Results of studies with cyclic ethers indicate that carcinogenicity is often species and sex dependent. Furan has been used to induce apoptosis (programmed cell death). Oxetanes are under investigation.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions

Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing.

Allergic reactions to benzoic acid have been reported. Of 100 patients with asthma undergoing provocation tests with benzoic acid, 47 showed positive reactions. In another study, of 75 patients with recurrent urticaria (skin eruptions) and angio-oedema (a deep dermal condition characterised by large wheals) of more than 4 months duration, 44 were found to be sensitive to sodium benzoate or p-hydroxybenzoic acid (paraben), alone or in conjunction with aspirin or azo- dyes, or both. In a further work there was no significant objective or subjective skin response to two 500-mg daily doses of benzoic acid or lactic acid in a double blind study of 150 dermatological patients Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades"

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials"

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells. [whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. Secondary amines may react in the acid conditions of the stomach with oxidants or preservatives) to form potentially carcinogenic N-nitrosamines. The formation of nitrosamines from such amines has not only been observed in animals models but, at least for certain compounds, in the workplace. The amine-containing substances and end products handled at work can themselves be contaminated to a degree with corresponding nitrosamines. Under conditions encountered in practice nitrosation is to be expected with secondary amines and to a limited extent with primary and tertiary amines. Nitrogen oxides are the most probable nitrosating agents. Nitrosyl chloride, nitrite esters, metal nitrites and nitroso compounds may also be involved. Several factors such as pH, temperature, catalysts and inhibitors influence the extent of nitrosation. Two precautionary measures are therefore necessary when handling amines at the workplace.

- Simultaneous exposure to nitrosating agents should be reduced to minimum. This can be out into practice by eliminating nitrosating agents or, if they play a role in the actual process, replacing them with substances that do not lead to the formation of carcinogenic nitrosamines. In particular the level of nitrogen oxides at the workplace should be monitored and reduced when necessary.
- ► The levels of nitrosamines in the workplace and in substances containing amines should be monitored.

Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report No. 31, DFG, 1995
In animal experiments the oesophagus is shown to be the most important target organ for nitrosamines, independent of the route of application. The mechanism of this organotrophy cannot be explained sufficiently. The high oesophageal epithelium metabolic activation of nitrosamines, together with a comparatively low DNA repair, probably plays the most important role. In addition chronic stress factors, which lead to high stimulation of epithelial turnover, are a pacemaker for malignant progression. In some countries, the traditional consumption of

Chemwatch: 5678-84 Part Number:

Version No: 4.1

Page 10 of 25

121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

extremely hot drinks leads to constant burns of the oesophagus, which increases the risk. Mate, a non-alcoholic brew, frequently consumed as tea in Uruguay, appears to be a high risk factor for oesophageal cancer

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Prolonged or repeated exposure to benzyl alcohol may cause allergic contact dermatitis.

Prolonged or repeated ingestion may affect behavior/central nervous system with symptoms similar to acute ingestion. It may also affect the liver, kidneys, cardiovascular system, and metabolism (weight loss).

Animal studies have shown this compound to cause lung, liver, kidney and CNS disorders. Studies in animals have shown evidence of teratogenicity in the chick embryo. The significance of the information for humans is unknown.

Benzyl alcohol showed no evidence of carcinogenic activity in long-term toxicology and carcinogenesis study.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system

depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

121 Fibreglass Epoxy Repair	TOXICITY	IRRITATION	
System Part B	Not Available	Not Available	
polyethylene polyamines	TOXICITY	IRRITATION	
	Oral (Rat) LD50: 2240 mg/kg ^[2]	Eye : Severe	
		Eye: adverse effect observed (irreversible damage) ^[1]	
		Skin : Severe	
		Skin: adverse effect observed (corrosive) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 2000 mg/kg ^[2]	Eye (rabbit): 0.75 mg open SEVERE	
	Inhalation (Rat) LC50: >4.178 mg/L4h ^[2]	Eye: adverse effect observed (irritating) ^[1]	
benzyl alcohol	Oral (Rat) LD50: 1230 mg/kg ^[2]	Skin (man): 16 mg/48h-mild	
		Skin (rabbit):10 mg/24h open-mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
cashew nut liquid/ formaldehyde/	TOXICITY	IRRITATION	
ethylenediamine polymer	Oral (Rat) LD50: 1080 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >4 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
glycidyl neodecanoate	Inhalation (Rat) LC50: >0.25 mg/l4h ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >10 mg/kg ^[2]		
	TOXICITY	IRRITATION	
tall oil/ tetraethylenepentamine	Oral (Rat) LD50: >5000 mg/kg ^[2]	Eyes (rabbit) (-) moderate	
polyamides		Skin (rabbit) (-) moderate	
		Skin: adverse effect observed (corrosive) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >400<2000 mg/kg ^[1]	Eye (rabbit): 5 mg - moderate	
A Production of the form	Inhalation (Rat) LC50: >4.31 mg/l4h ^[2]	Eye: adverse effect observed (irreversible damage) ^[1]	
3-dimethylaminopropylamine	Oral (Rat) LD50: 377.1 mg/kg ^[1]	Skin (rabbit): 0.1 mg/24h - open	
		Skin: adverse effect observed (corrosive) ^[1]	
		Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >973 mg/kg ^[1]	Eye (rabbit): 0.05 mg/24h - SEVERE [Rohm & Haas, Henkel]* [Ciba]	
2,4,6- tris[(dimethylamino)methyl]phenol	Oral (Rat) LD50: 1200 mg/kg ^[2]	Eye: adverse effect observed (irreversible damage) ^[1]	
		Skin (rabbit): 2 mg/24h - SEVERE	
		Skin: adverse effect observed (corrosive) ^[1]	
	TOXICITY	IRRITATION	
bisphenol A/ diglycidyl ether resin, liquid	dermal (rat) LD50: >1200 mg/kg ^[2]	Eye (rabbit): 100mg - Mild	
resili, liquid	Oral (Mouse) LD50; >500 mg/kg ^[2]		

Chemwatch: **5678-84** Page **11** of **25**

Part Number: Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

tetraethylenepentamine linear, cyclic and branched

TOXICITY	IRRITATION
Dermal (rabbit) LD50: 1260 mg/kg ^[2]	Eye (rabbit): 24 h Severe
Oral (Rat) LD50: 1716.2 mg/kg ^[2]	Eye: adverse effect observed (irreversible damage) ^[1]
	Skin (rabbit): 0.01 ml, 24 h-Severe *
	Skin: adverse effect observed (corrosive) ^[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

POLYETHYLENE POLYAMINES

* Akzo Nobel MSDS

BENZYL ALCOHOL

For benzyl alkyl alcohols:

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy.

For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur. **Mutagenicity:** All chemicals showed no mutagenic activity in *in vitro* ane tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in vitro* chromosomal/chromatid responses have been observed, no genotoxicity was observed in the *in vivo* cytogenetic, micronucleus, or other assays. The weight of the evidence of the *in vitro* and *in vivo* genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies. In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL = 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur.

Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and

Chemwatch: **5678-84** Page **12** of **25**

Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure.

Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear.

Axillae Bilateral axillary (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy.

Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic.

Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil.

Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare.

General/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis.

Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways.

Prohaptens

Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal.

The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin. These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into themical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity.

QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis

(nonallergio). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption. metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances.

All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The substances in this group:

Chemwatch: 5678-84 Page 13 of 25 Issue Date: 05/06/2024 Print Date: 06/06/2024

Part Number: 121 Fibreglass Epoxy Repair System Part B

Version No: 4.1

contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group

the major pathway of metabolic detoxification involves hydrolysis and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate

they show a consistent pattern of toxicity in both short- and long- term studies and

they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays

The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives.

In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases. Hydrolysis of benzyl and benzoate esters to yield corresponding alcohols and carboxylic acids and hydrolysis of acetals to yield benzaldehyde and simple alcohols have been reported in several experiments

The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid. Flavor and Extract Manufacturers Association (FEMA)

The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles

The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity.

At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin.

The potential for eye irritation is minimal

With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low.

NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels.

No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or a-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were negative.

It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients The Research Institute for Fragrance Materials (RIFM) Expert Panel

For cashew nutshell liquid (test substance Cardolite NX 4708 (distilled cashew nut shell liquid)

No oestrogenic activity was observed at all concentrations tested.

The substance was found to be non-mutagenic

Skin reactions observed after intradermal induction: Well-defined erythema (grade 2) was commonly noted at the intradermal injection sites at the 24-hour observation. Incidents of moderate to severe erythema were also noted at this time. Well-defined erythema persisted at all intradermal injection sites at the 48-hour observation.

Skin reactions observed after topical induction: Very slight or well-defined erythema (grades 1 or 2) with or without very slight oedema (grade 1), was commonly noted at the topical induction sites at the 1-hour observation. Incidents of fissuring of the skin, or bleeding were also noted at this time. The bleeding was probably caused by self-inflicted scratching of the skin. Skin reactions observed after topical challenge with 5% v/v Cardolite NC-700: Very slight or well-defined erythema (grade 1 or 2) was noted at the challenge sites of eleven animals at the 24-hour observation. Very slight oedema (grade 1) was also noted at five of these sites at this observation. Very slight erythema (grade 1) was noted at the challenge sites of 14 animals at the 48-hour observation, with very slight oedema (grade 1) at two of these sites.

Desquamation was seen at the challenge sites of seven animals. No evidence of erythema or oedema was seen at the 72hour observation, although the presence of desquamation precluded evaluation of erythema at the challenge sites of none

Skin reactions observed after topical challenge with 2% v/v Cardolite NC-700: Very slight or well-defined erythema (grade 1 or 2) was noted at the challenge sited of six animals at the 24-hour observation. Very slight oedema (grade 1) was also noted at one of these sites at this observation. Very slight erythema (grade 1) was noted at the challenge sited of five animals at the 48-hour observation. No skin reactions were noted at the challenge sites of two of these animals at the 24-hour observation. Desquamation was noted at one challenge site at the 48-hour observation. Very slight erythema (grade 1) persisted at the challenge site of one animal at the 72-hour observation. Desquamation was noted at the challenge sites of three animals at this time

Clinical observations: All animals showed an expected gain in bodyweight over the study period. No signs of ill-health were noted in any animal.

CONCLUSIONS

Remarks: Cardolite NC-700 produced a 70% (14/20) sensitisation rate in this study and was classified as a strong sensitiser

GLYCIDYL NEODECANOATE

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Fatty acid glycidyl esters (GEs) are potential carcinogens, due to the fact that they readily hydrolyze into the free form glycidol (2,3-epoxypropanol) in the gastrointestinal tract, which has been found to induce tumours in various rat tissues. Therefore, significant effort has been devoted to inhibit and eliminate the formation of GEs

Exposure to glycidol may also cause central nervous system depression, followed by central nervous system stimulation. Although harmful effects on humans and animals have not been demonstrated, the corresponding hydrolysates, 3-MCPD and glycidol, have been identified as rodent genotoxic carcinogens, ultimately resulting in the formation of kidney tumours (3-MCPD) and tumours at other tissue sites (glycidol). Therefore, 3-MCPD and glycidol have been categorised as "possible human carcinogens (group 2B) and "probably carcinogenic to humans (group 2A), respectively, by the International Agency for Research on Cancer (IARC).

Diacylglyceride (DAG) based oils produced by one company were banned from the global market due to "high levels" of GEs. For glycidyl neodecanoate

The material has a low order of acute toxicity by the oral, dermal, and inhalation routes of exposure. It is mildly irritating to the eyes and non-irritating to the skin. Dermal sensitisation has been observed in guinea pigs and has been reported in humans following occupational exposure. In vitro genotoxicity testing indicated weak mutagenic activity in point mutation assays with metabolic activation using Salmonella, but not in E. coli or yeast. Mutagenic activity was not observed in an in vitro mammalian cell assay. A weak ability to produce chromosomal damage was observed in cultured rat liver cells, but no DNA damage was produced in an in vivo rat liver assay. A low order of toxicity was observed in subchronic dietary testing with a No Observed Adverse Effect Level (NOAEL) of 1000 ppm in the diet. At high concentrations of 5000 and 10000 ppm in the diet, kidney effects were observed that were more prominent in males than in females. No effects were noted in reproductive organs of either sex. Further testing to evaluate potential developmental or reproductive effects has not been identified

The material has a low order of acute toxicity by the oral, dermal, and inhalation routes of exposure . In rats, the oral LD50 was greater than 10 ml/kg (approximately 10 g/kg) and the dermal LD50 was greater than 4 ml/kg (approximately 4 g/kg). The rat 4-hour inhalation LC50 was greater than 0.24 mg/L (approximately 240 mg/m3), a concentration exceeding the saturated vapor pressure. Due to the low vapor pressure resulting in a low level of maximal attainable vapor concentration, inhalation exposure is expected to pose a negligible hazard.

Repeated Dose Toxicity

A low order of toxicity was observed in rats following five-week dietary testing . Treatment-related effects were limited to the upper two dietary dose levels of 5,000 and 10,000 ppm (approximately 478 and 888 mg/kg/day body weight, respectively). Dose-related effects at these two dietary levels included: decreased food intake and body weights, minor changes in hematology and clinical chemistry, increased liver and kidney weights and nephrotoxicity to the proximal tubules of the kidneys that was more pronounced in males than in females. The Lowest Observed Adverse Effect Level (LOAEL) was 5,000 ppm in

Chemwatch: 5678-84 Page 14 of 25 Issue Date: 05/06/2024

Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

Print Date: 06/06/2024

the diet (approximately 478 mg/kg/day body weight) and the No Observed Adverse Effect Level (NOAEL) was 1,000 ppm in the diet (approximately 96 mg/kg/day body weight).

* HPV Chemical Challenge Program 2003

Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. for 1,2-butylene oxide (ethyloxirane):

Ethyloxirane increased the incidence of tumours of the respiratory system in male and female rats exposed via inhalation. Significant increases in nasal papillary adenomas and combined alveolar/bronchiolar adenomas and carcinomas were observed in male rats exposed to 1200 mg/m3 ethyloxirane via inhalation for 103 weeks. There was also a significant positive trend in the incidence of combined alveolar/bronchiolar adenomas and carcinomas. Nasal papillary adenomas were also observed in 2/50 high-dose female rats with none occurring in control or low-dose animals. In mice exposed chronically via inhalation, one male mouse developed a squamous cell papilloma in the nasal cavity (300 mg/m3) but other tumours were not observed. Tumours were not observed in mice exposed chronically via dermal exposure. When trichloroethylene containing 0.8% ethyloxirane was administered orally to mice for up to 35 weeks, followed by 0.4% from weeks 40 to 69, squamous-cell carcinomas of the forestomach occurred in 3/49 males (p=0.029, age-adjusted) and 1/48 females at week 106. Trichloroethylene administered alone did not induce these tumours and they were not observed in control animals . Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also direct-acting alkylating agents, have been classified as carcinogenic

TALL OIL/TETRAFTHYLENEPENTAMINE **POLYAMIDES**

For imidazoline surfactants (amidoamine/ imidazoline - AAIs)

All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances.

All in vivo skin irritation/corrosion studies performed on AAI substances all indicate them to be corrosive following 4 hour exposure. There do not seem to be big differences in response with the variation on EA length used for the production of the AAI.

The available data available for AAI substances indicate that for AAI based on shorter polyethyleneamines (EA), higher toxicity is observed compared to AAI based on longer EA. The forming of imidazoline itself does not seem to play a significant role. For cross-reading in general Fatty acid reaction product with diethylenetriamine (AAI-DETA) therefore represents the worst case. In series of 28-day and combined repeated dose/reproduction screening toxicity studies (OECD 422) AAI-DETA has shown the highest level of toxicity

Acute oral exposure of tall oil + triethylenepentamine (TEPA) show limited acute toxicity, with a LD50 above 2000 mg/kg bw. Hence no classification is required.

Acute dermal testing with corrosive materials is not justified. As a consequence no classification can be made for acute dermal toxicity. Effects will be characterised by local tissue damage. Systemic uptake via skin is likely to be very limited. The low acute oral toxicity indicate a low systemic toxicity.

For dermal exposure no good overall NOAEL can be established as effects are rather characterized by local corrosive effects that are related to duration, quantity and concentration, than by systemic toxicity due to dermal uptake. The mode of action for AAI follows from its structure, consisting of an apolar fatty acid chain and a polar end of a primary amine from the polyethyleneamine. The structure can disrupt the cytoplasmatic membrane, leading to lyses of the cell content and consequently the death of the cell.

The AAI are protonated under environmental conditions which causes them to strongly adsorb to organic matter. This leads to a low dermal absorption.

No classification for acute dermal toxicity is therefore indicated.

Also for acute inhalation toxicity information for classification is lacking, and is testing not justified. Due to very low vapour pressure is the likelihood of exposure low.

AAI do not contain containing aliphatic, alicyclic and aromatic hydrocarbons and have a relatively high viscosity and so do not indicate an immediate concern for aspiration hazard.

Various studies with different AAI indicate that these substances can cause dermal sensitisation.

All substances within the AAI group show the same reactive groups, show similar composition of amide, imidazoline, and some

dimer structures of both, with the length of original EA amines used for production as biggest difference. Inherent reactivity and toxicity is not expected to differ much between these substances, aspects which determine sensitization.

The actual risk of sensitisation is probably low, as AAI are corrosive to skin and consequently exposure will be low due to necessary protective measures to limit dermal exposure.

The likelihood for exposure via inhalation and thus experience respiratory irritation or becoming sensitised to AAI, is very low considering the high boiling point (> 300 deg C) and very low vapour pressure (0.00017 mPa at 25 deg C for diethylenetriamine (DETA) based AAI). In case of high exposure by inhalation, local effects will be more prominent then possible systemic effects considering the low systemic toxicity seen in acute oral toxicity testing

However, some calculations can be made for systemic effects following short-term inhalation exposure by extrapolating information from an OECD 422 study on "tall oil reaction products with tetraethylenepentamine showing a NOAEL of 300 mg/kg/day. This would certainly be protective for levels of acute inhalation expected to lead to similar systemic exposure

The corrected 8 hr inhalation NOAEC for workers is NOAEL (300 mg/kg) * 1.76 mg/m3 = 529 mg/m3 (assuming no difference in absorption following oral and inhalation exposure). Assessment factors further applied: No interspecies factor is needed due to allometric scaling applied in calculation of corrected NOAEC. Further combined inter-/intra-species for workers AF = 3 (ECETOC concept). As this involves acute exposures, no extrapolation for duration is needed.

This results in a DNEL of 529/3 = 176 mg/m3 .A short term/acute exposure at this level can be assumed not to lead to systemic toxicity.

Repeat dose toxicity

A combined repeated dose/reproduction screening toxicity study according to OECD 422 with Fatty acid reaction products with tetraethylene-pentamine resulted to a NOAEL of 300 mg/kg bw/day, the highest dose tested. Also available data from the group of Amidoamine/Imidazoline (AAI) substances, including 90-day studies in rat and dogs on a similar substance, indicate very low toxicity.

Consequently, serious toxicity is not observed at levels requiring consideration classification for STOTS-RE Genotoxicity

Tall oil, reaction products with tetraethylenepentamine is not mutagenic in the Salmonella typhimurium reverse mutation assay (based on test with Fatty acids C16-18, C18 unsaturated reaction products with tetraethylenepentamine), is not clastogenic in human lymphocytes, and not mutagenic in the TK mutation test with L5178Y mouse lymphoma cells

It can therefore be concluded that tall oil, reaction products with tetraethylenepentamine not genotoxic Toxicity to reproduction:

The database of relevant studies available for the group of amidoamine/ imidazolines (AAI) include various OECD 422 studies and an OECD 414 study, that all show no concerns regarding reproduction or developmental toxicity. Also all already available data from the group of AAI substances, including a 90-day study in dogs on a similar substance, indicate low toxicity and no adverse effects on reproductive organs. **REACh Dossier**

Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure.

Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are classified as Irritant (Xi) with the risk phrases R41

Chemwatch: **5678-84**

Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

These tests indicate that allergy to cocoamide DEA is becoming more common.

Page 15 of 25 Issue Date: 05/06/2024

Print Date: 06/06/2024

Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published.

Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics is 5% fatty acid dialkanolamides, and the maximum content of N-nitrosadialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol is a known nitrosating agent for secondary and tertiary amines or amides. Model assays have indicated that 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978).

Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in Salmonella typhimurium strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of Salmonella typhimurium when tested with or without metabolic activation

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency)

For Fatty Nitrogen Derived (FND) Amides (including several high molecular weight alkyl amino acid amides) The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.

The Fatty nitrogen-derived amides (FND amides) comprise four categories:

Subcategory I: Substituted Amides

Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)

Subcategory III: Imidazole Derivatives

Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies. Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II derivatives, the Subcategory I repeat-dose toxicity studies adequately support Subcategory II.

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory II.

In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole. Some typical applications of FND Amides are:

masonry cement additive; curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers.

The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesives; coatings for articles in food contact; coatings for polyolefin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of metallic food packaging; irradiation of prepared foods; release agents in manufacture of food packaging materials, food contact surface of paper and paperboard; cellophane in food packaging; closure sealing gaskets; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health.

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

For alkyl polyamines:

The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232

Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity.

Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules.

Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons

Tetraethylenepentamine (TEPA) has a low acute toxicity when administered orally to rats (LD50 =3250 mg/kg). In an acute inhalation toxicity study with saturated vapor and whole body exposure, the LC50 was calculated to be >9.9 ppm (highest dose tested). TEPA is corrosive to the skin and eyes of rabbits. TEPA is a skin sensitiser in the guinea pig. Dermal acute toxicity LD50 values in the rabbit range from 660 - 1260 mg/kg. The higher toxicity via the dermal route is most likely due to the corrosive nature of TEPA to the skin whereas TEPA would be neutralized by stomach acid.

The results of a 28-day repeated dose dermal toxicity study of TEPA indicated a systemic toxicity NOEL of 200 mg/kg/day and a dermal toxicity NOEL (local) of 50 mg/kg/day. The dermal LOAEL was 100 mg/kg/day. In addition, in a repeat dose study of

Part Number: Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

TETA administered in drinking water to male and female rats for 90-92 days, the NOEL was 276 mg/kg/day in males and 352 mg/kg/day in females, the highest dose administered with the NIH-31 diet (several diets were used to study the effects of copper deficiency versus toxicity directly to TEPA). In this same study in mice the NOEL was 487 mg/kg/day in males and 551 mg/kg/day in females, the highest dose administered. A lifetime study was conducted via dermal administration in fifty male mice with a solution of 35% TEPA. There were 20 cases of hyperkeratosis, 13 cases of epidermal necrosis and no evidence of dermal hyperplasia.

There were no data available for TEPA for reproductive and developmental toxicity. As a result, data on triethylenetetramine (TETA) was used to address these endpoints. TETA data showed no effects on reproductive organs in rats up to 276 mg/kg/day (males) and 352 mg/kg/day (females) and in mice (up to 500 mg/kg/day) when administered in drinking water. TETA was not considered a developmental toxicant via dermal administration in rabbits at maternally toxic doses up to 125 mg/kg/day but showed developmental toxicity in rats at maternally toxic doses of 830 or 1660 mg/kg/day via drinking water. The maternal and foetal toxicity was most likely due to copper deficiency and zinc toxicity at these levels. Subsequent studies where the diet was supplemented with copper resulted in a decrease of foetal abnormalities. There were no standard fertility studies available. However, there were no effects on the gonads observed in a 90-day drinking water study in rats and mice as described above.

In the Ames Salmonella assay, TEPA was found to be positive both with and without metabolic activation. TEPA was found to increase sister chromatid exchange in CHO cells and was considered positive in a UDS assay using rat hepatocytes. TEPA was not considered genotoxic in the mouse micronucleus assay and had equivocal results in the two dominant lethal assays in Drosophila melanogaster. Again, it is believed that the positive results are based upon TEPA's ability to chelate copper. For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals (where hydrogen atoms remain unsubstituted, the term "secondary- or "tertiary- ammonium compounds" is preferred).

A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue. The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation.

Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation.

It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions,

The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient.

From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times. At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound .

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin.

Although the absorption of QACs through normal skin probably is of less importance than by other routes , studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin **Sensitisation**: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride , cetalkonium chloride and cetrimide may possibly act as sensitisers . However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:

Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms.

Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays.

Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eves with R38 and R41.

for 3-dimethylaminopropylamine (syn 3-aminopropyldimethylamine, DMPA)

Acute toxicity: DMPA was been found to be harmful following oral administration to rats.

In a field study workers showed impaired respiration (wheezy breath, constricted chest, irritation of mucosa of the eyes, nose and pharynx) as a result of occupational exposure to DMPA (2.34 – 5.87 mg/m3= 0.55 – 1.38 ppm).

Based on the results of the sensitisation test on the skin DMPA has been classified as having a sensitising effect. DMPA showed strong irritating or corrosive effects.

Repeat dose toxicity: In a oral 28-day subchronic toxicity study with rats, the no-observed-adverse effect-level (NOAEL) was 50 mg /kg bw/day.

In the oral reproduction/developmental toxicity screening test the no-observed-adverse effect-level (NOAEL) was 200 mg/kg

Genotoxicity: DMPA was not mutagenic in the Ames Test and in a mouse micronucleus assay.

2,4,6-TRISI(DIMETHYLAMINO)METHYL1PHENOL

3-DIMETHYLAMINOPROPYLAMINE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Chemwatch: 5678-84

BISPHENOL A/ DIGLYCIDYL ETHER

RESIN, LIQUID

Version No: 4.1

Page 17 of 25 121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Foetoxicity has been observed in animal studies Oral (rabbit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg

The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor

In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated activity and 4-(4phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated activity. None of the BPs induced AR-mediated activity.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg).

Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg.

Carcinogenicity: IARC concluded that "there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was "Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3).

In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). **Genotoxicity**: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9;

negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg).

Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs

Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worstcase scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

ALCOHOL & GLYCIDYL NEODECANOATE & TALL OIL/ **TETRAETHYLENEPENTAMINE POLYAMIDES & 3-**DIMETHYLAMINOPROPYLAMINE & BISPHENOL A/ DIGLYCIDYL ETHER **RESIN, LIQUID &** TETRAETHYLENEPENTAMINE LINEAR, CYCLIC AND BRANCHED

POLYETHYLENE POLYAMINES &

GLYCIDYL NEODECANOATE & TALL OIL/

POLYFTHYLENE POLYAMINES & BENZYL

TETRAETHYLENEPENTAMINE LINEAR.

CYCLIC AND BRANCHED

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a nonallergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of

Continued...

CYCLIC AND BRANCHED

Page 18 of 25

121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

TETRAETHYLENEPENTAMINE POLYAMIDES & 3-**DIMETHYLAMINOPROPYLAMINE & 2,4,6-**TRIS[(DIMETHYLAMINO)METHYL]PHENOL & TETRAETHYLENEPENTAMINE LINEAR,

POLYETHYLENE POLYAMINES & TALL

DIMETHYLAMINOPROPYLAMINE & 2,4,6-

TRIS[(DIMETHYLAMINO)METHYL]PHENOL

OIL/ TETRAETHYLENEPENTAMINE

POLYAMIDES & 3-

Part Number:

Version No: 4.1

highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

Inhalation:

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient

Eye Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.)

Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure

Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

Ingestion:

mg/kg for the ethyleneamines.

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

CASHEW NUT LIQUID/ FORMALDEHYDE/ **ETHYLENEDIAMINE POLYMER & GLYCIDYL NEODECANOATE & 2.4.6-**TRISI(DIMETHYLAMINO)METHYL]PHENOL

No significant acute toxicological data identified in literature search.

TALL OIL/ TETRAETHYLENEPENTAMINE **POLYAMIDES &** TETRAETHYLENEPENTAMINE LINEAR, CYCLIC AND BRANCHED

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds. Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	~	STOT - Single Exposure	×
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Chemwatch: **5678-84**Part Number:
Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

✓ – Data available to make classification

SECTION 12 Ecological information

121 Fibreglass Epoxy Repair	Endpoint	Test Duration (hr)	Species	Value	Source
System Part B	Not Available	Not Available	Not Available	Not Available	Not Availab
	Endpoint	Test Duration (hr)	Species	Value	Source
polyethylene polyamines	LC50	96h	Fish	100mg/l	Not Availab
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	500mg/l	2
	LC50	96h	Fish	10mg/l	2
benzyl alcohol	EC50	48h	Crustacea	230mg/l	2
	NOEC(ECx)	336h	Fish	5.1mg/l	2
	EC50	96h	Algae or other aquatic plants	76.828mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
ashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available	Not Available	Not Available	Not Available	Not Availab
	Endpoint	Test Duration (hr)	Species	Value	Sour
	NOEC(ECx)		Algae or other aquatic plants	1mg/l	1
	LC50	96h	Fish	~5mg/l	2
glycidyl neodecanoate	EC50	72h	Algae or other aquatic plants	~1.2mg/l	2
	EC50	96h	Algae or other aquatic plants	3.5mg/l	1
	EC50	48h	Crustacea	4.8mg/l	1
	Endpoint	Toot Duration (hr)	Species	Value	Sour
	LC50	Test Duration (hr) 96h	Species Fish	0.19mg/l	2
tall oil/ tetraethylenepentamine	EC50 72h		Algae or other aquatic plants	0.638mg/l	2
polyamides	EC50	48h	Crustacea		2
	EC50(ECx)	48h	Crustacea	0.18mg/l 0.18mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sour
	EC50	72h	Algae or other aquatic plants	30mg/l	2
3-dimethylaminopropylamine	LC50	96h	Fish	100mg/l	1
	EC50	48h	Crustacea	30.16mg/l	2
	NOEC(ECx)	528h	Crustacea	3.64mg/l	2
	EC50	96h	Algae or other aquatic plants	57.5mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	24h	Crustacea	280mg/l	Not Availal
2,4,6- s[(dimethylamino)methyl]phenol	EC50	72h	Algae or other aquatic plants	2.8mg/l	2
stanietriyianinio)inetriyijphenor	EC50	48h	Crustacea	>100mg/l	2
	LC50	96h	Fish	1000mg/l	Not Availat
	Endpoint	Test Duration (hr)	Species	Value	Source
highbonol A/dishusidud adlas	LC50	96h	Fish	2.4mg/l	Not Availal
bisphenol A/ diglycidyl ether resin, liquid	EC50(ECx)	24h	Crustacea	3mg/l	Not
	EC50	48h	Crustacea	~2mg/l	Availat 2
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)		Algae or other aquatic plants	0.5mg/l	Not
totraethylenenentamine lines-	EC50	72h	Algae or other aquatic plants	2.1mg/l	Availat 2
tetraethylenepentamine linear, cyclic and branched	EC50	48h	Crustacea	2.111g/l 24.1mg/l	Not
			J. 4514004	2-1. IIIIg/I	Availab
	LC50	96h	Fish	420mg/l	Not Availat

Chemwatch: **5678-84** Page **20** of **25**

Part Number: Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

(Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
benzyl alcohol	LOW	LOW
glycidyl neodecanoate	HIGH	HIGH
3-dimethylaminopropylamine	HIGH	HIGH
2,4,6- tris[(dimethylamino)methyl]phenol	HIGH	HIGH
bisphenol A/ diglycidyl ether resin, liquid	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
benzyl alcohol	LOW (LogKOW = 1.1)
glycidyl neodecanoate	LOW (LogKOW = 3.7305)
3-dimethylaminopropylamine	LOW (LogKOW = -0.4502)
2,4,6- tris[(dimethylamino)methyl]phenol	LOW (LogKOW = 0.773)
bisphenol A/ diglycidyl ether resin, liquid	LOW (LogKOW = 2.6835)

Mobility in soil

Ingredient	Mobility
benzyl alcohol	LOW (Log KOC = 15.66)
glycidyl neodecanoate	LOW (Log KOC = 105.5)
3-dimethylaminopropylamine	LOW (Log KOC = 73.36)
2,4,6- tris[(dimethylamino)methyl]phenol	LOW (Log KOC = 15130)
bisphenol A/ diglycidyl ether resin, liquid	LOW (Log KOC = 51.43)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- More possible retain label warmings and 3D3 and observe an notices pertaining
 DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Product / Packaging disposal

Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used.

M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010

- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Treat and neutralise at an approved treatment plant.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous.

Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Part Number: Version No: 4.1

121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

Labels Required

Marine Pollutant

2X

HAZCHEM

Land transport (UN)

14.1. UN number or ID number	1760			
14.2. UN proper shipping name		CORROSIVE LIQUID, N.O.S. (contains tall oil/ tetraethylenepentamine polyamides, tetraethylenepentamine linear, cyclic and branched and polyethylene polyamines)		
14.3. Transport hazard class(es)	Class Subsidiary Hazard	8 Not Applicable		
14.4. Packing group	III			
14.5. Environmental hazard	Environmentally hazardous			
14.6. Special precautions for user	Special provisions Limited quantity	223; 274 5 L		

Air transport (ICAO-IATA / DGR)

14.1. UN number	1760				
14.2. UN proper shipping name	Corrosive liquid, n.o.s. * (contains tall oil/ tetraethylenepentamine polyamides, tetraethylenepentamine linear, cyclic and branched and polyethylene polyamines)				
	ICAO/IATA Class 8				
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard Not Applicable				
01005(00)	ERG Code	8L			
14.4. Packing group					
14.5. Environmental hazard	Environmentally hazardous				
	Special provisions		A3 A803		
	Cargo Only Packing Instructions		856		
	Cargo Only Maximum Qty / Pack		60 L		
14.6. Special precautions for user	Passenger and Cargo Packing In	structions	852		
	Passenger and Cargo Maximum	Qty / Pack	5 L		
	Passenger and Cargo Limited Qu	uantity Packing Instructions	Y841		
	Passenger and Cargo Limited Maximum Qty / Pack		1 L		

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1760		
14.2. UN proper shipping name	CORROSIVE LIQUID, N.O.S. (contains tall oil/ tetraethylenepentamine polyamides, tetraethylenepentamine linear, cyclic and branched and polyethylene polyamines)		
14.3. Transport hazard	IMDG Class	8	
class(es)	IMDG Subsidiary Hazard		ot Applicable
14.4. Packing group	III		
14.5 Environmental hazard	Marine Pollutant		
	EMS Number	F-A, S-B	
14.6. Special precautions for user	Special provisions	223 274	
4501	Limited Quantities	5 L	

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

· · · · · · · · · · · · · · · · · · ·	
Product name	Group
polyethylene polyamines	Not Available
benzyl alcohol	Not Available

Chemwatch: 5678-84

Page 22 of 25

Part Number:

Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

Product name	Group
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available
glycidyl neodecanoate	Not Available
tall oil/ tetraethylenepentamine polyamides	Not Available
3-dimethylaminopropylamine	Not Available
2,4,6- tris[(dimethylamino)methyl]phenol	Not Available
bisphenol A/ diglycidyl ether resin, liquid	Not Available
tetraethylenepentamine linear, cyclic and branched	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
polyethylene polyamines	Not Available
benzyl alcohol	Not Available
cashew nut liquid/ formaldehyde/ ethylenediamine polymer	Not Available
glycidyl neodecanoate	Not Available
tall oil/ tetraethylenepentamine polyamides	Not Available
3-dimethylaminopropylamine	Not Available
2,4,6- tris[(dimethylamino)methyl]phenol	Not Available
bisphenol A/ diglycidyl ether resin, liquid	Not Available
tetraethylenepentamine linear, cyclic and branched	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002503	Additives Process Chemicals and Raw Materials Subsidiary Hazard Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

polyethylene polyamines is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

benzyl alcohol is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 4 Quantity Limits for Dangerous Goods in Excepted Quantities

New Zealand Land Transport Rule; Dangerous Goods 2005 - Schedule 2 Dangerous Goods in Limited Quantities and Consumer Commodities

cashew nut liquid/ formaldehyde/ ethylenediamine polymer is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

glycidyl neodecanoate is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods

tall oil/ tetraethylenepentamine polyamides is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

3-dimethylaminopropylamine is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZloC)

2,4,6-tris[(dimethylamino)methyl]phenol is found on the following regulatory lists

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

bisphenol A/ diglycidyl ether resin, liquid is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

Part Number: Version No: **4.1**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Land Transport Rule: Dangerous Goods 2005 - Schedule 1 Quantity limits for dangerous goods

New Zealand Workplace Exposure Standards (WES)

tetraethylenepentamine linear, cyclic and branched is found on the following regulatory lists

Not Applicable

Additional Regulatory Information

Not Applicable

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Compliance Certificate)	Quantity (Compliance Certificate - Farms >4 ha)	
8.2B	250 kg or 250 L	3500 kg or 3500 L	

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities	
Not Applicable	Not Applicable	

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
6.5A or 6.5B	120	1	3	
8.2B	120	1	3	

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non- Industrial Use	No (tetraethylenepentamine linear, cyclic and branched)	
Canada - DSL	No (tetraethylenepentamine linear, cyclic and branched)	
Canada - NDSL	No (polyethylene polyamines; benzyl alcohol; cashew nut liquid/ formaldehyde/ ethylenediamine polymer; glycidyl neodecanoate; 3-dimethylaminopropylamine; 2,4,6-tris[(dimethylamino)methyl]phenol; bisphenol A/ diglycidyl ether resin, liquid; tetraethylenepentamine linear, cyclic and branched)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	No (cashew nut liquid/ formaldehyde/ ethylenediamine polymer)	
Japan - ENCS	No (polyethylene polyamines; cashew nut liquid/ formaldehyde/ ethylenediamine polymer; tall oil/ tetraethylenepentamine polyamides; tetraethylenepentamine linear, cyclic and branched)	
Korea - KECI	No (tetraethylenepentamine linear, cyclic and branched)	
New Zealand - NZIoC	No (tetraethylenepentamine linear, cyclic and branched)	
Philippines - PICCS	No (tetraethylenepentamine linear, cyclic and branched)	
USA - TSCA	No (tetraethylenepentamine linear, cyclic and branched)	
Taiwan - TCSI	No (tetraethylenepentamine linear, cyclic and branched)	
Mexico - INSQ	No (polyethylene polyamines; cashew nut liquid/ formaldehyde/ ethylenediamine polymer; tall oil/ tetraethylenepentamine polyamides; tetraethylenepentamine linear, cyclic and branched)	
Vietnam - NCI	Yes	
Russia - FBEPH	No (cashew nut liquid/ formaldehyde/ ethylenediamine polymer; tetraethylenepentamine linear, cyclic and branched)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	05/06/2024
Initial Date	17/05/2024

SDS Version Summary

Version	Date of Update	Sections Updated
3.1	22/05/2024	Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Hazards identification - Classification, Handling and storage - Handling Procedure, Composition / information on ingredients - Ingredients, Exposure controls / personal protection - Personal Protection (eye), Exposure controls / personal protection - Personal Protection (hands/feet), Accidental release measures - Spills (minor), Handling and storage - Storage (storage)

Chemwatch: 5678-84

Part Number: Version No: 4.1

Page 24 of 25 121 Fibreglass Epoxy Repair System Part B

Issue Date: 05/06/2024 Print Date: 06/06/2024

Version	Date of Update	Sections Updated
		incompatibility), Handling and storage - Storage (storage requirement), Handling and storage - Storage (suitable container), Transport Information
4.1	05/06/2024	Hazards identification - Classification, Identification of the substance / mixture and of the company / undertaking - Synonyms, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit,
- IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AllC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Chemwatch: **5678-84**Part Number:

Version No: 4.1

Page **25** of **25**

121 Fibreglass Epoxy Repair System Part B

Issue Date: **05/06/2024**Print Date: **06/06/2024**