CRC Industries (CRC Industries New Zealand)

Chemwatch: 4828-3

Version No: 6.1.1.1 Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

CRC 3358 Weld AntiSpatter (Aerosol)
Not Available
AEROSOLS
Not Available

Relevant identified uses of the substance or mixture and uses advised against

	Lubricant to prevent adhesion of weld spatter.
Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack
	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	CRC Industries (CRC Industries New Zealand)
Address	10 Highbrook Drive East Tamaki Auckland New Zealand
Telephone	+64 9 272 2700
Fax	+64 9 274 9696
Website	www.crc.co.nz
Email	customerservices@crc.co.nz

Emergency telephone number

Association / Organisation	CRC Industries (CRC Industries New Zealand)
Emergency telephone numbers	NZ Poisons Centre 0800 POISON (0800 764 766)
Other emergency telephone numbers	111 (NZ Emergency Services)

SECTION 2 HAZARDS IDENTIFICATION

Classification of t	he substance	or mixture	

Poisons Schedule	le Not Applicable	
Classification ^[1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Carcinogenicity Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

SIGNAL WORD	WARNING		
Hazard statement(s)			
H302	Harmful if swallowed.		
H315	Causes skin irritation.		
H351	Suspected of causing cancer.		
AUH044	Risk of explosion if heated under confinement.		
Precautionary statement(s) Pre	Precautionary statement(s) Prevention		
P201	Obtain special instructions before use.		
P281	Use personal protective equipment as required.		
P270	Do not eat, drink or smoke when using this product.		
P280	Wear protective gloves/protective clothing/eye protection/face protection.		

Chemwatch Hazard Alert Code: 2

Issue Date: 01/11/2019 Print Date: 03/04/2020

L.GHS.AUS.EN

P308+P313	IF exposed or concerned: Get medical advice/attention.
P321	Specific treatment (see advice on this label).
P362	Take off contaminated clothing and wash before reuse.
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P330	Rinse mouth.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

Store locked up.

Precautionary statement(s) Disposal

P501

P405

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
75-09-2	>60	methylene chloride
Not Available	10-30	mineral oil
Not Available	1-10	additives
124-38-9	1-10	carbon dioxide

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Not considered a normal route of entry. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.

+ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.

Treat seizures with diazepam.

Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

for intoxication due to Freons/ Halons;

A: Emergency and Supportive Measures

- Maintain an open airway and assist ventilation if necessary • Treat coma and arrhythmias if they occur. Avoid (adrenaline) epinephrine or other sympathomimetic amines that may precipitate ventricular arrhythmias. Tachyarrhythmias caused
- by increased myocardial sensitisation may be treated with propranolol, 1-2 mg IV or esmolol 25-100 microgm/kg/min IV.

Monitor the ECG for 4-6 hours

B: Specific drugs and antidotes:

There is no specific antidote C: Decontamination

- Inhalation; remove victim from exposure, and give supplemental oxygen if available.
- Ingestion; (a) Prehospital: Administer activated charcoal, if available. DO NOT induce vomiting because of rapid absorption and the risk of abrupt onset CNS depression. (b) Hospital: Administer activated charcoal, although the efficacy of charcoal is unknown. Perform gastric lavage only if the ingestion was very large and recent (less than 30 minutes) D: Enhanced elimination:

There is no documented efficacy for diuresis, haemodialysis, haemoperfusion, or repeat-dose charcoal. POISONING and DRUG OVERDOSE, Californian Poison Control System Ed. Kent R Olson; 3rd Edition

- Do not administer sympathomimetic drugs unless absolutely necessary as material may increase myocardial irritability.
- No specific antidote.
- Because rapid absorption may occur through lungs if aspirated and cause systematic effects, the decision of whether to induce vomiting or not should be made by an attending physician.
- If lavage is performed, suggest endotracheal and/or esophageal control.
- Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach.
- Treatment based on judgment of the physician in response to reactions of the patient

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2

- LARGE FIRE:
- Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result		
dvice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
Fire/Explosion Hazard	 Not combustible. Not considered to be a significant fire risk. Heating may cause expansion or decomposition leading to violent rupture of containers. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. Decomposes on heating and may emit toxic fumes of carbon monoxide (CO). Decomposes on heating and may emit toxic fumes of carbon monoxide (CO). Decomposition may produce toxic fumes of: carbon monoxide (CO) carbon dioxide (CO2) hydrogen chloride phosgene other pyrolysis products typical of burning organic material. Non flammable liquid. However vapour will burn when in contact with high temperature flame. Ignition ceases on removal of flame. May form a flammable / explosive mixture in an oxygen enriched atmosphere Heating may cause expansion/vapourisation with violent rupture of containers Decomposes on heating and produces corrosive fumes of hydrochloric acid, carbon monoxide and small amounts of toxic phosgene. 		
HAZCHEM	Not Applicable		

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and safe place if possible. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

 Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT increate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. 	Avoid contact with incompatible materials.
--	--

Conditions for safe storage, including any incompatibilities

Suitable container	 DO NOT use aluminium or galvanised containers Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	 Methylene chloride is a combustible liquid under certain circumstances even though there is no measurable flash point and it is difficult to ignite its is flammable in ambient air in the range 12-23%; increased oxygen content can greatly enhance fire and explosion potential contact with hot surfaces and elevated temperatures can form fumes of hydrogen chloride and phosgene reacts violently with active metals, aluminium, lithium, methanol,, peroxydisulfuryl difluoride, potassium, potassium tert-butoxide, sodium forms explosive mixtures with nitric acid is incompatible with strong oxidisers, strong caustics, alkaline earths and alkali metals attacks some plastics, coatings and rubber may generate electrostatic charge due to low conductivity Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methylene chloride	Methylene chloride	50 ppm / 174 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	mineral oil	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	carbon dioxide	Carbon dioxide in coal mines	12500 ppm / 22500 mg/m3	54000 mg/m3 / 30000 ppm	Not Available	Not Available
Australia Exposure Standards	carbon dioxide	Carbon dioxide	5000 ppm / 9000 mg/m3	54000 mg/m3 / 30000 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
methylene chloride	Methylene chloride; (Dichloromethane)		Not Available	Not Available	Not Available
mineral oil	Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7		140 mg/m3	1,500 mg/m3	8,900 mg/m3
Ingredient	Original IDLH Revised IDLH				
methylene chloride	2,300 ppm Not Available				
mineral oil	2,500 mg/m3	Not Available			
carbon dioxide	40,000 ppm Not Available				

MATERIAL DATA

For methylene chloride

Odour Threshold Value: 158 ppm (detection), 227 ppm (recognition)

NOTE: Detector tubes for methylene chloride, measuring in excess of 25 ppm are commercially available. Long-term measurements (4 hrs) may be conducted to detect concentrations exceeding 13 ppm.

Exposure at or below the recommended TLV-TWA (and in the absence of occupational exposure to carbon monoxide) is thought to minimise the potential for liver injury and to provide protection against the possible weak carcinogenic effects which have been demonstrated in laboratory rats and mice. Enhancement of tumours of the lung, liver, salivary glands and mammary tissue in rodent studies has lead NIOSH to recommend a more conservative outcome. The ACGIH however concludes that in the absence of documentation of healthrelated injuries at higher exposures after a long history of methylene chloride use and a number of epidemiologic studies, the recommended TLV-TWA provides an adequate margin of safety.

Concentration effects:	
Concentration	Clinical effects
>300 ppm	Sweet odour
500-1000 ppm (1-2 h)	Unpleasant odour, slight anaesthetic effects, headache, light-headedness, eye irritation and elevated COHb concentration
2300 ppm (5 min.)	Odour strong, intensely irritating; dizziness
7200 ppm (8-16 min)	Paraesthesia, tachycardia
>50000 ppm	Immediately life-threatening
For carbon dioxide:	
NOTE DUILING LANGE	

NOTE: Detector tubes for carbon dioxide, measuring in excess of 0.01 % vol., are commercially available. Long-term measurements (4 hrs) may be conducted to detect concentrations exceeding 250 ppm

Studies using physically fit males in confined spaces indicate the TLV-TWA and STEL provides a wide margin of safety against asphyxiation and from undue metabolic stress, provided normal amounts of oxygen are present in inhaled air. Lowered oxygen content, increased physical activity and prolonged exposures each impact on systemic and respiratory effects

Stimulation of the respiratory centre is produced at 50,000 ppm (5%). The gas is weakly narcotic at 30,000 ppm giving rise to reduced acuity of hearing and increasing blood pressure and pulse, Persons exposed a 20,000 ppm for several hours developed headaches and dyspnea on mild exertion, Acidosis and adrenal cortical exhaustion occurred as a result of prolonged continuous exposure at 10,000-20,0000 ppm.

Intoxication occurs after a 30 minute exposure at 50,000 ppm whilst exposure at 70,000-100,000 ppm produces unconsciousness within a few minutes.

Odour Safety Factor (OSF)

OSF=0.068 (CARBON DIOXIDE)

Exposure controls

	be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh			
	circulating air required to effectively remove the contaminant			
	Type of Contaminant:		Speed:	
Appropriate engineering	aerosols, (released at low velocity into zone of active generation) 0.5-1 m/s			
controls	direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.)			
	Within each range the appropriate value depends on:			
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity		
	3: Intermittent, low production.	3: High production, heavy use		
	4: Large hood or large air mass in motion	4: Small hood-local control only		
	Simple theory shows that air velocity falls rapidly with distance with the square of distance from the extraction point (in simpl accordingly, after reference to distance from the contaminatin 1-2 m/s (200-400 f/min.) for extraction of solvents generated considerations, producing performance deficits within the ext	e cases). Therefore the air speed at the extraction ng source. The air velocity at the extraction fan, for in a tank 2 meters distant from the extraction point.	point should be adjusted, example, should be a minimum o Other mechanical	

factors of 10 or more when extraction systems are installed or used.

Eye and face protection	No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE : For potentially moderate or heavy exposures: • Safety glasses with side shields. • NOTE : Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.
Skin protection	See Hand protection below
Hands/feet protection	 No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear.
Body protection	See Other protection below
Other protection	No special equipment needed when handling small quantities. OTHERWISE: • Overalls. • Skin cleansing cream. • Eyewash unit. • Do not spray on hot surfaces.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

CRC 3358 Weld AntiSpatter (Aerosol)

Material	CPI
PE/EVAL/PE	A
PVA	A
TEFLON	В
BUTYL	С
CPE	С
NATURAL RUBBER	С
NEOPRENE	С
VITON	С
VITON/BUTYL	С
VITON/CHLOROBUTYL	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

Respiratory protection

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deqC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Appearance	Slightly amber liquid; does not mix with water. Supplied as an aerosol pack. Contents under PRESSURE. Contains carbon dioxide propellant.				
Physical state	Liquid	Relative density (Water = 1)	1.24		
Odour	Not Available	Partition coefficient n-octanol / water	Not Available		
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available		
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available		
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available		
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable		
Flash point (°C)	Not Applicable	Taste	Not Available		
Evaporation rate	Not Available	Explosive properties	Not Available		
Flammability	Not Applicable	Oxidising properties	Not Available		
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available		
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available		
Vapour pressure (kPa)	Not Available	Gas group	Not Available		

Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

	Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
	Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.
Inhaled	 Common, generalised symptoms associated with toxic gas inhalation include: central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Inhalation hazard is increased at higher temperatures. WARNING:Intentional misuse by concentrating/inhaling contents may be lethal. Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved. Inhalation exposure may cause susceptible individuals to show change in heart beat rhythm i.e. cardiac arrhythmia. Exposures must be terminated.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments
Skin Contact	 The material produces severe skin irritation; evidence exists, or practical experience predicts, that the material either: produces severe inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant and severe inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. NOTE: Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
	Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Limited evidence or practical experience suggests, that the material may cause moderate eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged exposure may cause moderate inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures
Chronic	On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
	There is some evidence to provide a presumption that human exposure to the material may result in impaired fertility on the basis of: some evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

Principal route of occupational exposure to the gas is by inhalation.

Methylene chloride exposures cause liver and kidney damage in animals and this justifies consideration before exposing persons with a history of impaired liver function and/or renal disorders.

Chronic exposure may produce central nervous system damage including confusion, delusions, slurred speech, memory impairment, anxiety, focal seizures, encephalopathy and visual and auditory hallucinations. These effects are probably due to chronic carbon monoxide poisoning resulting from methylene chloride metabolism.

Two epidemiological studies of workers exposed to methylene chloride have been published. An excess in pancreatic tumours was noted in one study. Chronic exposure to methylene chloride (approximately 30-120 ppm TWA) did not appear to increase the risk of deaths arising from lung cancer or cardiovascular disease. A study from Zeneca's Central Toxicology Laboratory added further support to the claim that solvent methylene chloride is not a human carcinogen. This study supported a previous finding by the European Centre of Ecology and Toxicology (ECETOC) that methylene chloride induced-cancers, previously identified in mice, were a consequence of a unique metabolic pathway found only in mice.

CRC 3358 Weld AntiSpatter	TOXICITY	IRRITATION		
(Aerosol)	Not Available	Not Available		
	ΤΟΧΙΟΙΤΥ	IRRITATION		
	dermal (rat) LD50: >2000 mg/kg ^[2]	Eye(rabbit): 162 mg - moderate		
methylene chloride	Inhalation (rat) LC50: 76 mg/l/4H ^[2]	Eye(rabbit): 500 mg/24hr - mild		
	Oral (rat) LD50: 985 mg/kg ^[2]	Skin (rabbit): 100mg/24hr-moderate		
		Skin (rabbit): 810 mg/24hr-SEVERE		
	τοχιςιτγ	IRRITATION		
mineral oil	Not Available	Not Available		
carbon dioxide	ΤΟΧΙCITY	IRRITATION		
	Inhalation (mouse) LC50: 180.5 mg/l/2H ^[2]	Not Available		
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise			

 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

CRC 3358 Weld AntiSpatter (Aerosol)	The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: The adverse effects of the undesizable components are inversely related to the degree of processing; Distillate base oils receiving the same degree or extent of processing with any similar toxicitie; The protential toxicity of residual base oils is independent of the degree of processing; Undergond and the degree of refining influences the carcinogenic potential of the degree of processing. The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of biorant base oils is inversely related to the degree of processing. The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential carcinogenic carcituse. Highly and severely refined distillate base oils are produced from unrefined and mildly refined distillate base oils have a smaller range of hydrocarbon molecules and have shown the highest potential carcinogenic tartituse. Highly and severely refined attrained and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very were manufant toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently both mat fuelting base oils. For the degree of molecular size. Bioliticant ConNAWE based on 14 cests on 10 CASs from the OLBCO dass (Other Lubricant Base Olis). Each study lasted of 24 hou

	 mg/kg/day and no LOAEL was determined. Developmental toxicity, teratogenicity: Heavy paraffinic distillate fufural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day) and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following OII Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H3614 (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length ity drocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbons with a spleen. Excreted unchanged in the facees. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excreted on data indicate inherent strain differences in the total systemic exposure (-4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic				
	 The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive, The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials. Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil ose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat. Genotoxicity: In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices. In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test mate				
METHYLENE CHLORIDE	Carcinogenicity: Highly & severely refined base oils a WARNING: This substance has been classified by the Inhalation (human) TCL o: 500 ppm/1 y - I Eve(rabbit)	IARC as Group 2A: Probably Carcin			
MINERAL OIL	Inhalation (human) TCLo: 500 ppm/1 y - I Eye(rabbit): 10 mg - mild Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude. A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene). Petroleum oils which are solvent refined/extracted or severely hydrotreated, contain very low concentrations of both.				
CRC 3358 Weld AntiSpatter (Aerosol) & METHYLENE CHLORIDE	The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.				
Acute Toxicity	¥	Carcinogenicity	✓		
Skin Irritation/Corrosion	¥	Reproductivity	×		
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×		
Respiratory or Skin sensitisation	× STOT - Repeated Exposure ×				
Mutagenicity	×	Aspiration Hazard	×		
			not available or does not fill the criteria for classification le to make classification		

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
CRC 3358 Weld AntiSpatter (Aerosol)	Not Available	Not Available	Not Available	Not Available	Not Available

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish =13.1mg/l		1
methylene chloride	EC50	48	Crustacea 1-682mg/L		2
	EC50	96	Algae or other aquatic plants	161.874mg/L	3
	NOEC	96	Algae or other aquatic plants	56mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCI
mineral oil	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
carbon dioxide	LC50	96	Fish	53.413mg/L	
	EC50	96	Algae or other aquatic plants	237.138mg/L	3
Legend:		1. IUCLID Toxicity Data 2. Europe ECHA Registe Aquatic Toxicity Data (Estimated) 4. US EPA, Ec	8	, ,	

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

for lubricating oil base stocks:

Vapor Pressure Vapor pressures of lubricating base oils are reported to be negligible. In one study, the experimentally measured vapour pressure of a solvent-dewaxed heavy paraffinic distillate base oil was 1.7 x 10exp-4 Pa . Since base oils are mixtures of C15 to C50 paraffinic, naphthenic, and aromatic hydrocarbon isomers, representative components of those structures were selected to calculate a range of vapor pressures. The estimated vapor pressure values for these selected components of base oils ranged from 4.5 x 10exp-1 Pa to 2 x 10exp-13Pa. Based on Dalton's Law the expected total vapour pressure for base oils would fall well below minimum levels (10exp-5 Pa) of recommended experimental procedures.

Partition Coefficient (log Kow): In mixtures such as the base oils, the percent distribution of the hydrocarbon groups (i.e., paraffins, naphthenes, and aromatics) and the carbon chain lengths determines in-part the partitioning characteristics of the mixture. Generally, hydrocarbon chains with fewer carbon atoms tend to have lower partition coefficients than those with higher carbon numbers. However, due to their complex composition, unequivocal determination of the log Kow of these hydrocarbon mixtures cannot be made. Rather, partition coefficients of selected C15 chain-length hydrocarbon structures representing paraffinic, naphthenic, and aromatic constituents in base oil lubricants were modelled. Results showed typical log Kow values from 4.9 to 7.7, which were consistent with values of >4 for lubricating oil basestocks

Water Solubility: When released to water, base oils will float and spread at a rate that is viscosity dependent. While water solubility of base oils is typically very low, individual hydrocarbons exhibit a wide range of solubility depending on molecular weight and degree of unsaturation. Decreasing molecular weight (i.e., carbon number) and increasing levels of unsaturation increases the water solubility of these materials. As noted for partition coefficient, the water solubility of lubricating base oils cannot be determined due to their complex mixture characteristics. Therefore, the water solubility of individual C15 hydrocarbons representing the different groups making up base oils (i.e., linear and branched paraffins, naphthenes, and aromatics) was modelled. Based on water solubility modelling of those groups, aqueous solubilities are typically much less than 1 ppm. (0.003-0.63 mg/l) Environmental Fate:

Photodegradation: Chemicals having potential to photolyse have UV/visible absorption maxima in the range of 290 to 800 nm. Some chemicals have absorption maxima significantly below 290 nm and consequently cannot undergo direct photolysis in sunlight (e.g. chemicals such as alkanes, alkenes, alkynes, saturated alcohols, and saturated acids). Most hydrocarbon constituents of the materials in this category are not expected to photolyse since they do not show absorbance within the 290-800 nm range. However, photodegradation of polyaromatic hydrocarbons (PAHs) can occur and may be a significant degradation pathway for these constituents of lubricating base oils. The degree and rate at which PAHs may photodegrade depend upon whether conditions allow penetration of light with sufficient energy to effect a change. For example, polycyclic aromatic compounds (PAC) compounds bound to sediments may persist due to a lack of sufficient light penetration

Atmospheric gas-phase reactions can occur between organic chemicals and reactive molecules such as photochemically produced hydroxyl radicals, ozone and nitrogen oxides. Atmospheric oxidation as a result of radical attack is not direct photochemical degradation, but indirect degradation. In general, lubricating base oils have low vapour pressures and volatilisation is not expected to be a significant removal mechanism for the majority of the hydrocarbon components. However, some components (e.g., C15 branched paraffins and naphthenes) appear to have the potential to volatilise Atmospheric half-lives of 0.10 to 0.66 days have been calculated for representative C15 hydrocarbon components of lubricating base oils

Stability in Water: Chemicals that have a potential to hydrolyze include alkyl halides, amides, carbamates, carboxylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters. Because lubricating base oils do not contain significant levels of these functional groups, materials in the lubricating base oils category are not subject to hydrolysis

Chemical Transport and Distribution in the Environment : Based on the physical-chemical characteristics of component hydrocarbons in lubricating base oils, the lower molecular weight components are expected to have the highest vapour pressures and water solubilities, and the lowest partition coefficients. These factors enhance the potential for widespread distribution in the environment. To gain an understanding of the potential transport and distribution of lubricating base oil components, the EQC (Equilibrium Criterion) model was used to characterize the environmental distribution of different C15 compounds representing different structures found in lube oils (e.g., paraffins, naphthenes, and aromatics). The modelling found partitioning to soil or air is the ultimate fate of these C15 compounds. Aromatic compounds partition principally to soil. Linear paraffins partition mostly to soil, while branching appears to allow greater distribution to air. Naphthenes distribute to both soil and air, with increasing proportions in soil for components with the greater number of ring structures. Because the modelling does not take into account degradation factors, levels modelled in the atmosphere are likely overstated in light of the tendency for indirect photodegradation to occur.

Biodegradation: The extent of biodegradation measured for a particular lubricating oil basestock is dependent not only on the procedure used but also on how the sample is presented in the biodegradation test. Lubricant base oils typically are not readily biodegradable in standard 28-day tests. However, since the oils consist primarily of hydrocarbons that are ultimately assimilated by microorganisms, and therefore inherently biodegradable. Twenty-eight biodegradability studies have been reported for a variety of lubricating base oils. Based on the results of ultimate biodegradability tests using modified Sturm and manometric respirometry testing the base oils are expected to be, for the most part, inherently biodegradable. Biodegradation rates found using the modified Sturm procedure ranged from 1.5 to 29%. Results from the manometric respirometry tests on similar materials showed biodegradation rates from 31 to 50%. Biodegradation rates measured in 21-day CEC tests for similar materials ranged from 13 to 79%.

Ecotoxicity:

Numerous acute studies covering fish, invertebrates, and algae have been conducted to assess the ecotoxicity of various lubricating base oils. None of these studies have shown evidence of acute toxicity to aquatic organisms. Eight, 7-day exposure studies using rainbow trout failed to demonstrate toxicity when tested up to the maximum concentration of 1000 mg/L applied as dispersions. Three, 96-hour tests with rainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fathead minnows at a maximum test concentration of 1000 mg/L water accommodated fractions (WAF) showed no adverse effects. Two species of aquatic invertebrates (Daphnia magna and Gammarus sp.) were exposed to WAF solutions up to 10,000 mg/L for 48 and 96-hours, respectively, with no adverse effects being observed. Four-day exposures of the freshwater green alga (Scenedesmus subspicatus) to 500 mg/L WAF solutions failed to show adverse effects on growth rate and algal cell densities in four studies Multiple chronic ecotoxicity studies have shown no adverse effects to daphnid survival or reproduction. In 10 of 11 chronic studies, daphnids were exposed for 21 days to WAF preparations of lubricating base oils with no ill effects on survival or reproduction at the maximum concentration of 1000 mg/L. One test detected a reduction in reproduction at 1000 mg/L. Additional data support findings of no chronic toxicity to aquatic invertebrates and fish. No observed effect levels ranged from 550 to 5,000 mg/L when tested as either dispersions or WAFs.

The data described above are supported by studies on a homologous series of alkanes. The author concluded that the water solubility of carbon chains .C10 is too limited to elicit acute toxicity. This also was shown for alkylbenzene compounds having carbon numbers .C15. Since base oils consist of carbon compounds of C15 to C50, component hydrocarbons that are of acute toxicological concern are, for the most part, absent in these materials. Similarly, due to their low solubility, the alkylated two to three ring polyaromatic components in base oils are not expected to cause acute or chronic toxicity. This lack of toxicity is borne out in the results of the reported studies. The effects of crude and refined oils on organisms found in fresh and sea water ha been extensively reviewed.

sea water. Where spillages occur the non-mobile species suffer the greatest mortality, whereas fish species can often escape from the affected region. The extent of the initial mortality depends on the chemical nature of the oil, the location, and the physical conditions, particularly the temperature and wind velocity. Most affected freshwater and marine communities recover from the effects of an oil spill within a year. The occurrence of biogenic hydrocarbons in the world's oceans is well recorded. They have the characteristic isoprenoid structure, and measurements made in water columns indicate a background concentration of 1.0 to 10 ul/l. The higher molecular weight materials are dispersed as particles, with the highest

concentrations of about 20 ul/l occurring in the top 3 mm layer of water.

A wide variation in the response of organisms to oil exposures has been noted. The larvae of fish and crustaceans appear to be most susceptible to the water-soluble fraction of crude oil. Exposures of plankton and algae have indicated that certain species of diatoms and green algae are inhibited, whereas microflagellates are not. For the most part, molluscs and most intertidal worm species appear to be tolerant of oil contamination.

For carbon dioxide:

Environmental fate:

Carbon dioxide in earth's atmosphere is considered a trace gas currently occurring at an average concentration of about 385 parts per million by volume or 582 parts per million by mass. The mass of the Earth atmosphere is 5.14×10+18 kg, so the total mass of atmospheric carbon dioxide is 3.0×10+15 kg (3,000 gigatonnes). Atmospheric concentrations of carbon dioxide fluctuate slightly with the change of the seasons, driven primarily by seasonal plant growth.

Due to human activities such as the combustion of fossil fuels and deforestation, the concentration of atmospheric carbon dioxide has increased by about 35% since preindustrial times. In 1999, 2,244,804,000 (=~2.2 x10+9) metric tons of CO2 were produced in the U.S. as a result of electric energy generation. This is an output rate of 0.6083 kg (1.341 pounds) per kWh.

There is about 50 times as much carbon dissolved in the oceans in the form of CO2 and CO2 hydration products as exists in the atmosphere. The oceans act as an enormous carbon sink, having "absorbed about one-third of all human-generated CO2 emissions to date." Generally, gas solubility decreases as water temperature increases. Accordingly the ability of the oceans to absorb carbon dioxide from the atmosphere decreases as ocean temperatures rise.

Carbon dioxide is soluble in water, in which it spontaneously interconverts between CO2 and H2CO3 (carbonic acid). The relative concentrations of CO2, H2CO3, and the deprotonated forms HCO3 - (bicarbonate) and CO3 2-(carbonate) depend on the pH. In neutral or slightly alkaline water (pH > 6.5), the bicarbonate form predominates (>50%) becoming the most prevalent (>95%) at the pH of seawater, while in very alkaline water (pH > 10.4) the predominant (>50%) form is carbonate. The bicarbonate and carbonate forms are very soluble, such that air-equilibrated ocean water (mildly alkaline with typical pH = 8.2 - 8.5) contains about 120 mg of bicarbonate per liter.

Most of the CO2 taken up by the ocean forms carbonic acid. Some is consumed in photosynthesis by organisms in the water, and a small proportion of that sinks and leaves the carbon cycle. There is considerable concern that as a result of increased CO2 in the atmosphere the acidity of seawater has been increasing and may adversely affect organisms living in the water. In particular, with increasing acidity, the availability of carbonates for forming shells decreases

For methylene chloride: log Kow: 1.25 log Koc: 1.68 log Kom: 1.44 Henry's atm m3 /mol: 2.68E-03 BCF: 5

Environmental fate:

Methylene chloride is a volatile liquid, and tends to volatilise to the atmosphere from water and soil. The half-life of methylene chloride volatilisation from water has been found to be 21 minutes under experimental conditions but actual volatilisation from natural waters will depend on the rate of mixing, wind speed, temperature, and other factors. The Henry's law constant value (H) of 0.002 atm/m3/mol indicates that methylene chloride will volatilise rapidly from moist soil and water surfaces.

Methylene chloride is not strongly sorbed to soils or sediments Based on its low soil organic carbon partitioning coefficient (Koc) of 25, methylene chloride is likely to be very highly mobile in soils and may be expected to leach from soils into groundwater.

Based on a reported log octanol/water partition coefficient (Kow) of 1.3 an estimated bioconcentration factor (BCF) of 2.3 was derived. There is no evidence of biomagnification, but because the estimated BCF is low, significant biomagnification of methylene chloride in aquatic food chains is not expected.

Air: The main degradation pathway for methylene chloride in air is its reaction with photochemically generated hydroxyl radicals. Thus, the atmospheric lifetime of methylene chloride may be predicted from the hydroxyl radical concentration in air and the rate of reaction. Most reported rates for hydroxyl radical reaction with methylene chloride range from 1.0 x10-13 to 1.5 x10-13 cm3/mol/sec, and estimates of average atmospheric hydroxyl radical concentration range from 2.5 x10+5 to 1x10+6 mol/cm3 Using this information, an average atmospheric lifetime for methylene chloride may be calculated to be 130 days. Because this degradation pathway is relatively slow, methylene chloride may become widely dispersed but is not likely to accumulate in the atmosphere. The small amount of methylene chloride which reaches the stratosphere (about 1%) may undergo direct photolytic degradation; however, photolysis in the troposphere is not expected. Reactions of methylene chloride with ozone or other common atmospheric species (e.g., oxygen atoms, chlorine atoms, and nitrate radicals) are not believed to contribute to its breakdown.

Water: Methylene chloride undergoes slow hydrolysis in water. The experimental half-life reported for the hydrolysis reaction, at neutral conditions, is approximately 18 months at 25 C

However, the rate of reaction varies greatly with changes in temperature and pH. A hydrolytic half-life of 14 days was reported for methylene chloride in acidic solutions at 80-150 C. This experimental value, when extrapolated to 25 C, is about 700 years. Different mechanisms of hydrolyses may be responsible for these two widely different values. Both aerobic and anaerobic biodegradation may be an important fate process for methylene chloride in water. Methylene chloride has been observed to undergo degradation at a

rapid rate under aerobic conditions. Reported total methylene chloride loss was 100% after 7 days in a static culture flask biodegradability screening test. Sediment and Soil: The rate of biodegradation was found to be dependent on soil type, substrate concentration, and redox state of the soil. Methylene chloride biodegradation has been reported to occur under both aerobic conditions and anaerobic conditions. The biodegradation of methylene chloride appears to be accelerated by the presence of elevated

levels of organic carbon. Methylene chloride has a low tendency to absorb to soil; therefore, there is a potential for leaching to groundwater. Also, because of the high vapor pressure, volatilisation to air is also a likely fate process from dry soil. Its high Henry's law constant (0.002 atm/m3/mol) indicates that volatilization from moist soil is also likely. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
methylene chloride	LOW (Half-life = 56 days)	HIGH (Half-life = 191 days)	
carbon dioxide	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation
methylene chloride	LOW (BCF = 40)
carbon dioxide	LOW (LogKOW = 0.83)

Mobility in soil

Pr

Ingredient	Mobility
methylene chloride	LOW (KOC = 23.74)
carbon dioxide	HIGH (KOC = 1.498)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

ste treatment methous	
Product / Packaging disposal	 DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.

Consult State Land Waste Management Authority for disposal.
 Discharge contents of damaged aerosol cans at an approved site.
 Allow small quantities to evaporate.
 DO NOT incinerate or puncture aerosol cans.
 Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.2 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions63 190 277 327 344 381Limited quantity1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950				
UN proper shipping name	Aerosols, non-flammable)			
Transport hazard class(es)	ICAO/IATA Class2.2ICAO / IATA SubriskNot ApplicableERG Code2L				
Packing group	Not Applicable	Not Applicable			
Environmental hazard	Not Applicable				
	Special provisions		A98 A145 A167 A802		
	Cargo Only Packing Instructions		203		
	Cargo Only Maximum Qty / Pack		150 kg		
Special precautions for user	Passenger and Cargo Packing Instructions		203		
	Passenger and Cargo Maximum Qty / Pack		75 kg		
	Passenger and Cargo Limited Quantity Packing Instructions		Y203		
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G		

Sea transport (IMDG-Code / GGVSee)

UN number	1950			
UN proper shipping name	AEROSOLS			
Transport hazard class(es)	IMDG Class 2.2 IMDG Subrisk Not Applicable			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number Special provisions Limited Quantities	F-D , S-U 63 190 277 327 344 381 959 1000 ml		

Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

Safety, health and environmental regulations / legislation specific for the substance or mixture

METHYLENE CHLORIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

MINERAL OIL IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

CARBON DIOXIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2A: Probably carcinogenic to humans

National Inventory Status

National Inventory	Status		
Australia - AICS	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (carbon dioxide; methylene chloride)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - ARIPS	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)		

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	09/05/2005

SDS Version Summary

Version	Issue Date	Sections Updated
5.1.1.1	19/06/2018	Physical Properties
6.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit_o IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.