CRC Industries (CRC Industries New Zealand)

Chemwatch: 4546-27

Version No: 11.1.1.1 Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	CRC (NZ) 3063 CDT Cutting Oil (Aerosol)
Synonyms	Not Available
Proper shipping name	AEROSOLS
Other means of identification	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Neat cutting oil Relevant identified uses Application is by spray atomisation from a hand held aerosol pack

Details of the supplier of the safety data sheet

Registered company name	CRC Industries (CRC Industries New Zealand)
Address	10 Highbrook Drive East Tamaki Auckland New Zealand
Telephone	+64 9 272 2700
Fax	+64 9 274 9696
Website	www.crc.co.nz
Email	customerservices@crc.co.nz

Emergency telephone number

Association / Organisation	CRC Industries (CRC Industries New Zealand)	
Emergency telephone numbers	NZ Poisons Centre 0800 POISON (0800 764 766)	
Other emergency telephone numbers	111 (NZ Emergency Services)	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Flammable Aerosols Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
abel elements		
Hazard pictogram(s)		

SIGNAL WORD DANGER Hazard statement(s) H222 Extremely flammable aerosol. AUH044 Risk of explosion if heated under confinement. Precautionary statement(s) Prevention P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. P211 Do not spray on an open flame or other ignition source.

P251	Pressurized container: Do not pierce or burn, even after use.

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Issue Date: 01/11/2019 Print Date: 03/04/2020 L.GHS.AUS.EN

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	>60	mineral oil
68476-85-7.	10-30	LPG (liquefied petroleum gas)

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	Not considered a normal route of entry.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

+ Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this product.

- In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases.
 High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement.
- NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2
 LARGE FIRE:
 Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. 	

	On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon monoxide (CO)
	carbon dioxide (CO2) sulfur oxides (SOx) other pyrolysis products typical of burning organic material.
	Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.
	CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.
HAZCHEM	Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

	Avoid all personal contact, including inhalation.
	Wear protective clothing when risk of exposure occurs.
	Use in a well-ventilated area.
	Prevent concentration in hollows and sumps.
	 DO NOT enter confined spaces until atmosphere has been checked.
	Avoid smoking, naked lights or ignition sources.
	Avoid contact with incompatible materials.
	When handling, DO NOT eat, drink or smoke.
Safe handling	DO NOT incinerate or puncture aerosol cans.
	DO NOT spray directly on humans, exposed food or food utensils.
	Avoid physical damage to containers.
	Always wash hands with soap and water after handling.
	Work clothes should be laundered separately.
	Use good occupational work practice.
	Observe manufacturer's storage and handling recommendations contained within this SDS.
	Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
	+ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
	Store in original containers in approved flammable liquid storage area.
	DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
	No smoking, naked lights, heat or ignition sources.
	Keep containers securely sealed. Contents under pressure.
Other information	 Store away from incompatible materials.
	Store in a cool, dry, well ventilated area.
	Avoid storage at temperatures higher than 40 deg C.
	Store in an upright position.
	Protect containers against physical damage.
	Check regularly for spills and leaks.
	Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Aerosol dispenser.
--------------------	--

Check that containers are clearly labelled.

 Storage incompatibility
 CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire.

 • Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	mineral oil	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
mineral oil	Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7		140 mg/m3	1,500 mg/m3	8,900 mg/m3
LPG (liquefied petroleum gas)	Liquified petroleum gas; (L.P.G.)		65,000 ppm	2.30E+05 ppm	4.00E+05 ppm
Ingredient	Original IDLH	Revised IDLH			
mineral oil	2,500 mg/m3	Not Available			

LPG (liquefied petroleum gas)	2,000 ppm	Not Available

MATERIAL DATA

Sensory irritatis are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign calling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- ▶ cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- + acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

For liquefied petroleum gases (LPG):

TLV TWA: 1000 ppm, 1800 mg/m3 (as LPG)

ES TWA: 1000 ppm, 1800 mg/m3 (as LPG)

OES TWA: 1000 ppm, 1750 mg/m3; STEL: 1250 ppm, 2180 mg/m3 (as LPG)

IDLH Level: 2000 ppm (lower explosive limit)

No chronic systemic effects have been reported from occupational exposure to LPG. The TLV-TWA is based on good hygiene practices and is thought to minimise the risk of fire or explosion.

Odour Safety Factor(OSF)

OSF=0.16 (hydrocarbon propellant)

Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude.

A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene).

Petroleum oils which are solvent refined/extracted or severely hydrotreated, contain very low concentrations of both.

NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Appropriate engineering controls	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to				
	obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "o circulating air required to effectively remove the contaminant.				
	Type of Contaminant:	Speed:			
	aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s			

	direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.)			
	Within each range the appropriate value depends on:			
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity		
	3: Intermittent, low production.	3: High production, heavy use		
	4: Large hood or large air mass in motion	4: Small hood-local control only		
	with the square of distance from the extraction point (in simpl accordingly, after reference to distance from the contaminatin 1-2 m/s (200-400 f/min.) for extraction of solvents generated considerations, producing performance deficits within the ext	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.		
Personal protection				
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: Safety glasses with side shields. NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. Close fitting qas tight goggles 			
Skin protection	See Hand protection below			
Hands/feet protection	 No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. 			
Body protection	See Other protection below			
Other protection	 No special equipment needed when handling small quantities. OTHERWISE: Overalls. Skin cleansing cream. Eyewash unit. Do not spray on hot surfaces. The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. 			

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Brown viscous liquid; not miscible with water. Supplied as an aerosol pack. Contents under PRESSURE . Contains highly flammable hydrocarbon propellant.			
Physical state	Liquid	Relative density (Water = 1)	0.864-0.884	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	32.4-39	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	>190 (PMCC)	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 STABILITY AND REACTIVITY

See section 7
 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
See section 7
See section 7
See section 7
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Common, generalised symptoms associated with toxic gas inhalation include: • central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; • respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; • cardiovascular effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Inhalation hazard is increased at higher temperatures. Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and diziness, increased reaction time,
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
Skin Contact	Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of

Eyeis expected to produce significant ocular lesions which are present twer animals. Repeated or prolonged eye contact may cause inflammation or (conjunctivitis); temporary impairment of vision and/or other transient ey Direct contact with the eye may not cause irritation because of the extre irritation after brief exposures.Limited evidence suggests that repeated or long-term occupational exp biochemical systems. Principal route of exposure is by skin contact; lesser exposures include with mineral oils carries with it the risk of skin conditions such as oil folli warts on the sole of the foot (plantar warts). With highly refined mineral absorption. Exposure to oil mists frequently elicits respiratory conditions, such as a concentrations may produce lipoid pneumonia although clinical evidence mist, for periods of 12 to 26 months, the activity of lung and serum alkal this response. These enzyme changes are sensitive early indicators of 5 to 35 years showed an increased prevalence of slight basal lung fibro Many studies have linked cancers of the skin and scrotum with mineral aromatic hydrocarbons (PAHs - as in the crude base stock) are probabl /reclaimed motor oils. Subchronic 90-day feeding studies conducted on found that higher molecular-weight hydrocarbons (microcrystalline waxe waxes and low- to mid viscosity oils produced biological effects that we oil-type and processing did not appear to be determinants. Biological effects mainly in the liver and mesenteric lymph nodes and included increased	haracterised by temporary redness (similar to windburn) of the conjunctiva re damage/ulceration may occur. me volatility of the gas; however concentrated atmospheres may produce osure may produce cumulative health effects involving organs or inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact culitis, eczematous dermatitis, pigmentation of the face (melanosis) and oils no appreciable systemic effects appear to result through skin sthma; the provoking agent is probably an additive. High oil mist e is equivocal. In animals exposed to concentrations of 100 mg/m3 oil line phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce lung damage. Workers exposed to vapours of mineral oil and kerosene for sis. oil exposure. Contaminants in the form of additives and the polycyclic y responsible. PAH levels are higher in aromatic process oils/used
biochemical systems. Principal route of exposure is by skin contact; lesser exposures include with mineral oils carries with it the risk of skin conditions such as oil folli warts on the sole of the foot (plantar warts). With highly refined mineral absorption. Exposure to oil mists frequently elicits respiratory conditions, such as a concentrations may produce lipoid pneumonia although clinical evidence mist, for periods of 12 to 26 months, the activity of lung and serum alkal this response. These enzyme changes are sensitive early indicators of 5 to 35 years showed an increased prevalence of slight basal lung fibro Many studies have linked cancers of the skin and scrotum with mineral aromatic hydrocarbons (PAHs - as in the crude base stock) are probabl /reclaimed motor oils. Subchronic 90-day feeding studies conducted on found that higher molecular-weight hydrocarbons (microcrystalline waxe waxes and low- to mid viscosity oils produced biological effects that we oil-type and processing did not appear to be determinants. Biological effects mainly in the liver and mesenteric lymph nodes and included increased presence of saturated mineral hydrocarbons in affected tissues. Inflame treated with paraffin waxes.	inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact culitis, eczematous dermatitis, pigmentation of the face (melanosis) and oils no appreciable systemic effects appear to result through skin sthma; the provoking agent is probably an additive. High oil mist e is equivocal. In animals exposed to concentrations of 100 mg/m3 oil ine phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce lung damage. Workers exposed to vapours of mineral oil and kerosene for sis. oil exposure. Contaminants in the form of additives and the polycyclic y responsible. PAH levels are higher in aromatic process oils/used
 Repeated or prolonged exposure to mixed hydrocarbons may produce i memory loss, tremor in the fingers and tongue, vertigo, olfactory disord loss and anaemia and degenerative changes in the liver and kidney. Of been associated with visual disturbances, damage to the central nervou paraesthesias), psychological and neurophysiological deficits, bone ma and renal involvement. Chronic dermal exposure to petroleum hydrocar Surface cracking and erosion may also increase susceptibility to infectio workers has reported elevations in standard mortality ratios for skin can between routine workplace exposure to petroleum or one of its constituut unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from pet with carbon numbers ranging from approximately C5-C20 and boiling b have complex and variable compositions with constituents of 4 types, ai (primarily alkylated one- and two-ring species). Despite the composition toxicological properties, and the overall toxicological hazards can be charge exceeding occupational recommendations. Otherwise, there are naphthalene, have unique toxicological properties Animal studies: No deaths or treatment related signs of toxicity were observed in rats exconcentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for observed in high dose animals. Exposure to pregnant rats at concentral cause maternal or foetal toxicity. Lifetime skin painting studies in mice w following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not shor response is likely related to chronic irritation and not to dose. The muta variety of mutagenicity tests. The exact relationship between these res have been shown to produce a species specific, sex hormonal depended 	es and the higher viscosity oils) were without biological effects. Paraffin re inversely proportional to molecular weight, viscosity and melting point: fects were more pronounced in females than in males. Effects occurred organ weights, microscopic inflammatory changes, and evidence for the nation of the cardiac mitral valve was also observed at high doses in rats narcosis with dizziness, weakness, irritability, concentration and/or ers, constriction of visual field, paraesthesias of the extremities, weight ironic exposure by petroleum workers, to the lighter hydrocarbons, has is system, peripheral neuropathies (including numbness and rrow toxicities (including hypoplasia possibly due to benzene) and hepatic bons may result in defatting which produces localised dermatoses. on by microorganisms. One epidemiological study of petroleum refinery cer along with a dose-response relationship indicating an association ents and skin cancer, particularly melanoma. Other studies have been roleum processing streams, containing only carbon and hydrogen atoms, etween approximately 35-370 deg C. Many of the hydrocarbon solvents kanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics al complexity, most hydrocarbon solvent constituents have similar aracterized in generic terms. Hydrocarbon solvents can cause chemical use acute CNS effects and/or ocular and respiratory irritation at exposure few toxicologically important effects. The exceptions, n-hexane and the similar naphthas have shown weak or no carcinogenic activity ow any significant carcinogenic activity indicating that this tumorigenic genic potential of naphthas has been reported to be largely negative in a ults and human health is not known. Some components of this product
Humans do not form alpha-2u-globulin, therefore, the kidney effects res	unung nom uns mechanism are not relevant in numan.
CRC (NZ) 3063 CDT Cutting TOXICITY	IRRITATION
Oil (Aerosol) Not Available	Not Available

LPG (liquefied petroleum gas) Not Available Not Available Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

CRC (NZ) 3063 CDT Cutting Oil (Aerosol)

TOXICITY

Not Available

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: The adverse effects of these materials are associated with undesirable components, and

Not Available

IRRITATION

The levels of the undesirable components are inversely related to the degree of processing: Distillate base oils receiving the same degree or extent of processing will have similar toxicities; The potential toxicity of residual base oils is independent of the degree of processing the oil receives. . The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing. The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential. Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil's mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method). Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO class(Other Lubricant Base Oils). Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils)) Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)). Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance is not toxic for reproduction. STOT (toxicity on specific target organs) - repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3. Sub-chronic toxicity 90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies). Repeat dose toxicity: Oral NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered orally. Inhalation The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3. Dermal In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals. Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day. Toxicity to reproduction: Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined. Developmental toxicity, teratogenicity: Heavy paraffinic distillate furfural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis. Highly and Severely Refined Distillate Base Oils Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l. When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil's toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study + The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive, • The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and

The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study's authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of

Even to bese of uses groups, there indices to be based a were load uring there lens. The study under considered free malaministics to be more interaction in the outer and program of the malaministic and the malaminis and themalaministic and the malaministic and the malaministi an					
MNEEAL OIL Toticity and Initiation data for petroleum-based mineral clis are related to chemical components and vary as does the composition and source of the original course. A small bit definition is of occupational skin cancer occurs in workers exposed to pervisitent share constantion by olico ore a period of years. This is has been and minimulated to the persone of certain polycipic anomatic hydociatonons (PAH) (policid by benefgipyrene). Petroleum on the which are solvent relined/detatacad or severely hydociatonos of both. No significant acute toxicological data identified in literature search. for Petroleum hydocaton Gases. No significant acute toxicological data identified in literature search. for Petroleum hydocaton gases is dependent upon each petroleum hydocaton gases is dependent upon each petroleum hydocaton gas constituent or each of the petroleum hydocaton gas constituent or each of the petroleum hydocaton gases is dependent to different momalian endpoints, gain, being dependent upon the constituent since toxic data identified in literature search in the different constituents in each, distince petroleum hydocaton gases are leaded to has a search be origined and acute constituents or constituents of the petroleum hydocaton gas and table constituents in each, distince petroleum hydocaton gas and table constituent and the acute to acute toxic and acute constituents on constituents on the different constituents in each, distince petroleum hydocaton gas and table acute acute toxic and acute constituents and acute constituents in each, distince petroleum hydocaton gas and table acute acute toxic and acute constituents and acute constituents and acute constituents in each, distince petroleum hydocaton gas and table acute acute toxic and acute constituents ton and acute constituents for and acute		minor and within the normal ranges for the strain of ra Genotoxicity: In vitro (mutagenicity): Several studies have reported oils with no or low concentrations of 3-7 ring PACs ha In vivo (chromosomal aberrations): A total of seven bi- cytogenetics assay. The test materials were administ either a single day or for five consecutive days. None Carcinogenicity: Highly & severely refined base oils Allergic reactions which develop in the respiratory par- allergen with specific not antibodies of the IgE class and I allergen-specific potential for causing respiratory sens disposition of the exposed person are likely to be dec person to allergy. They may be genetically determined Immunologically the low molecular weight substances (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathe asthma and atopic eczema (neurodermatitis) which is Exogenous allergic alveolitis is induced essentially by lymphocytes) may be involved. Such allergy is of the The following information refers to contact allergens a Contact allergies quickly manifest themselves as comI eczema involves a cell-mediated immune reactions. The sig distribution of the substance and the opportunities for distributed can be a more important allergen than one	at. the results of testing different base oil d low mutagenicity indices. ase stocks were tested in male and fe ered via gavage at dose levels ranging of the base oils produced a significan are not carcinogens, when given eithe ssages as bronchial asthma or rhinocc belong in their reaction rates to the ma- sitiation, the amount of the allergen, t isive. Factors which increase the sens d or acquired, for example, during infe s become complete allergens in the or esis which is characterised by an incre associated with increased IgE synthe r allergen specific immune-complexes delayed type with onset up to four hou as a group and may not be specific to nune reaction of the delayed type. Ott inificance of the contact allergen is no contact with it are equally important. a with stronger sensitising potential with	is for mutagenicity using a modified Ames assay Base male Sprague-Dawley rats using a bone marrow from 500 to 5000 mg/kg (bw). Dosing occurred for t increase in aberrant cells. er orally or dermally. onjunctivitis, are mostly the result of reactions of the anifestation of the immediate type. In addition to the the exposure period and the genetically determined itivity of the mucosa may play a role in predisposing a ctions or exposure to irritant substances. ganism either by binding to peptides or proteins ased susceptibility to allergic rhinitis, allergic bronchial sis. of the IgG type; cell-mediated reactions (T urs following exposure. this product. or Quincke's oedema. The pathogenesis of contact ner allergic skin reactions, e.g. contact urticaria, t simply determined by its sensitisation potential: the A weakly sensitising substance which is widely h which few individuals come into contact. From a	
GP Ceroleum Hydrocathon Gases: In mary cases, the is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each marmalian endpoints for each of the performal hydrocathon gases is deependent upon each performal mydrocathon gase. Statubul also be noted that for an individual performant of the different constituent phydrocathon (see Sec Steppon) and the constituent provide mydrocathon gase. Statubul also be noted that for an individual performant on the constituent provide mydrocathon gase. Names and alkenes and submet components of the petroleum hydrocathon gases are less toxic than the C1 - O4 and C5 - O6 hydrocathon constituents in the petroleum hydrocathon gase are less toxic than the C1 - O4 and C5 - O6 hydrocathon constituents of hydrocathon gase constituents. The noter of a submet social in primary hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gas constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents in the highest exposed in the set toxic is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constituents. The noter of a submet social is petroleum hydrocathon gase constitements fore in vitro genotoxicity of the escent socis	MINERAL OIL	Toxicity and Irritation data for petroleum-based mineral oils are related to chemical components and vary as does the composition and source of the original crude. A small but definite risk of occupational skin cancer occurs in workers exposed to persistent skin contamination by oils over a period of years. This risk has been attributed to the presence of certain polycyclic aromatic hydrocarbons (PAH) (typified by benz[a]pyrene).			
Skin Irritation/Corrosion X Reproductivity Serious Eye Damage/Irritation X STOT - Single Exposure Respiratory or Skin sensitisation X STOT - Repeated Exposure	Oil (Aerosol) & LPG (LIQUEFIED PETROLEUM	No significant acute toxicological data identified in literature search. for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different toralifferent mammalian endpoints, gain, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbons gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diseel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents form most to least toxic is: C4CeBoy members Acute toxicity: No acute toxicity LC50 values have been derived for the C1 - C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels testel (~ Eng) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents. Based upon LOAEL (Sc50 > 10, 000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 128,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected pe			
Skin Irritation/Corrosion X Reproductivity Serious Eye Damage/Irritation X STOT - Single Exposure Respiratory or Skin sensitisation X STOT - Repeated Exposure	Acute Toxicity	×	Carcinogenicity	×	
Serious Eye Damage/Irritation X STOT - Single Exposure Respiratory or Skin sensitisation X STOT - Repeated Exposure	-				
Respiratory or Skin sensitisation × STOT - Repeated Exposure					
	Respiratory or Skin	× STOT - Repeated Exposure ×			
	Mutagenicity	×	Aspiration Hazard	×	

Data either not available or does not fill the criteria for classification
 Data available to make classification

Toxicity

CRC (NZ) 3063 CDT Cutting Oil (Aerosol)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
mineral oil	Not Available	Not Available	Not Available	Not Available	Not Available
LPG (liquefied petroleum gas)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	24.11mg/L	2
	EC50	96	Algae or other aquatic plants	7.71mg/L	2
Legend:	Extracted from	1. IUCLID Toxicity Data 2. Europe ECH	A Registered Substances - Ecotoxicological Informati	on - Aquatic Toxicitv 3.	EPIWIN Su

for Petroleum Hydrocarbon Gases:

Environmental fate:

The environmental fate characteristics of petroleum hydrocarbon gases are governed by these physical-chemical attributes. All components of these gases will partition to the air where interaction with hydroxyl radicals is an important fate process. Hydrocarbons having molecular weights represented in these streams are inherently biodegradable, but their tendency to partition to the atmosphere would prevent their biotic degradation in water and soils. However, if higher molecular weight fractions of these streams enter the aquatic or terrestrial environment, biodegradation may be an important fate mechanism.

Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

The majority of components making up hydrocarbon gases typically have low melting and boiling points. They also have high vapor pressures and low octanol/water partition coefficients. The aqueous solubilities of these substances vary, and range from approximately 22 parts per million to several hundred parts per million. The environmental fate characteristics of refinery gases are governed by these physical-chemical attributes. Components of the hydrocarbon gas streams will partition to the air, and photodegradation reactions will be an important fate process for many of the hydrocarbon components. The hydrocarbons in these mixtures are inherently biodegradable, but due to their tendency to partition to the atmosphere, biodegradation is not anticipated to be an important fate mechanisms. However, if released to water or soil, some of the higher molecular weight fractions may become available for microbial attack. The inorganic gases are chemically stable and may be lost to the atmosphere or simply become involved in the environmental recycling of their atoms. Some show substantial water solubility, but their volatility eventually causes these gases to enter the atmosphere.

Substances in Refinery Gases that volatilise to air may undergo a gas-phase oxidation reaction with photochemically produced hydroxyl radicals (OH-). Atmospheric oxidation as a result of hydroxyl radical attack is not direct photochemical degradation, but rather indirect degradation Indirect photodegradation of the hydrocarbon components in Refinery Gases can be an important fate process for these constituents. In general, half lives decrease with increasing carbon chain length. Half lives for this fraction of Refinery Gases ranged from 960 days (methane) to 0.16 days (butadiene). The constituents of the C5- C6 hydrocarbon fraction have photodegradation half-lives of approximately two days.

The hydrocarbon and non-hydrocarbon constituents in Refinery Gases do not contain the functional groups or chemical linkages known to undergo hydrolysis reactions. Therefore hydrolysis will not play an important role in the environmental fate for the components in Refinery Gas streams.

Biodegradation of the hydrocarbon components in refinery gases may occur in soil and water. Gaseous hydrocarbons are widespread in nature and numerous types of microbes have evolved which are capable of oxidizing these substances as their sole energy source . Although volatilization is the predominant behavior for these gases, sufficient aqueous solubility and bioavailability is exhibited by these compounds. The use of gaseous carbon sources for cell growth is common among autotrophic organisms. Higher chain length hydrocarbons typical of naphtha streams also are known to inherently biodegrade in the environment

Ecotoxicity:

Acute LC/EC50 values for the hydrocarbon components of these gas streams ranged roughly from 1 to 100 mg/L.

Although the LC/EC50 data for the individual gases illustrate the potential toxicity to aquatic organisms, aqueous concentrations from releases of these gases would likely not persist in the aquatic environment for a sufficient duration to elicit toxicity. Based on a simple conceptual exposure model analysis, emissions of petroleum hydrocarbon gases to the atmosphere would not likely result in acutely toxic concentrations in adjacent water bodies because such emissions will tend to remain in the atmosphere.

Several of the constituents in refinery gases were shown to be highly hazardous to aquatic organisms in laboratory toxicity tests where exposure concentrations can be maintained over time. Hydrogen sulfide was shown to be the most toxic constituent to fish (LC50 ranged 0.007 to 0.2 mg/L) and invertebrates (EC50 ranged 0.022 to 1.07 mg/L), although several LC/EC50 values for ammonia also were below 1 mg/l for these organisms (0.083 to 4.6 mg/L and 0.53 to 22.8 mg/L, respectively).

for lubricating oil base stocks:

Vapor Pressure Vapor pressures of lubricating base oils are reported to be negligible. In one study, the experimentally measured vapour pressure of a solvent-dewaxed heavy paraffinic distillate base oil was 1.7 x 10exp-4 Pa . Since base oils are mixtures of C15 to C50 paraffinic, naphthenic, and aromatic hydrocarbon isomers, representative components of those structures were selected to calculate a range of vapor pressures. The estimated vapor pressure values for these selected components of base oils ranged from 4.5 x 10exp-1 Pa to 2 x 10exp-13Pa. Based on Dalton's Law the expected total vapour pressure for base oils would fall well below minimum levels (10exp-5 Pa) of recommended experimental procedures

Partition Coefficient (log Kow): In mixtures such as the base oils, the percent distribution of the hydrocarbon groups (i.e., paraffins, naphthenes, and aromatics) and the carbon chain lengths determines in-part the partitioning characteristics of the mixture. Generally, hydrocarbon chains with fewer carbon atoms tend to have lower partition coefficients than those with higher carbon numbers .However, due to their complex composition, unequivocal determination of the log Kow of these hydrocarbon mixtures cannot be made. Rather, partition coefficients of selected C15 chain-length hydrocarbon structures representing paraffinic, naphthenic, and aromatic constituents in base oil lubricants were modelled . Results showed typical log Kow values from 4.9 to 7.7, which were consistent with values of >4 for lubricating oil basestocks

Water Solubility: When released to water, base oils will float and spread at a rate that is viscosity dependent. While water solubility of base oils is typically very low, individual hydrocarbons exhibit a wide range of solubility depending on molecular weight and degree of unsaturation. Decreasing molecular weight (i.e., carbon number) and increasing levels of unsaturation increases the water solubility of these materials. As noted for partition coefficient, the water solubility of lubricating base oils cannot be determined due to their complex mixture characteristics. Therefore, the water solubility of individual C15 hydrocarbons representing the different groups making up base oils (i.e., linear and branched paraffins, naphthenes, and aromatics) was modelled. Based on water solubility modelling of those groups, aqueous solubilities are typically much less than 1 ppm. (0.003-0.63 mg/l) **Environmental Fate:**

Photodegradation: Chemicals having potential to photolyse have UV/visible absorption maxima in the range of 290 to 800 nm. Some chemicals have absorption maxima significantly below 290 nm and consequently cannot undergo direct photolysis in sunlight (e.g. chemicals such as alkanes, alkenes, alkynes, saturated alcohols, and saturated acids). Most hydrocarbon constituents of the materials in this category are not expected to photolyse since they do not show absorbance within the 290-800 nm range. However, photodegradation of polyaromatic hydrocarbons (PAHs) can occur and may be a significant degradation pathway for these constituents of lubricating base oils. The degree and rate at which PAHs may photodegrade depend upon whether conditions allow penetration of light with sufficient energy to effect a change. For example, polycyclic aromatic compounds (PAC) compounds bound to sediments may persist due to a lack of sufficient light penetration

Atmospheric gas-phase reactions can occur between organic chemicals and reactive molecules such as photochemically produced hydroxyl radicals, ozone and nitrogen oxides. Atmospheric oxidation as a result of radical attack is not direct photochemical degradation, but indirect degradation. In general, lubricating base oils have low vapour pressures and volatilisation is not expected to be a significant removal mechanism for the majority of the hydrocarbon components. However, some components (e.g., C15 branched paraffins and naphthenes) appear to have the potential to volatilise Atmospheric half-lives of 0.10 to 0.66 days have been calculated for representative C15 hydrocarbon components of lubricating base oils

Stability in Water: Chemicals that have a potential to hydrolyze include alkyl halides, amides, carbamates, carbamylic acid esters and lactones, epoxides, phosphate esters, and sulfonic acid esters. Because lubricating base oils do not contain significant levels of these functional groups, materials in the lubricating base oils category are not subject to hvdrolvsis

Chemical Transport and Distribution in the Environment : Based on the physical-chemical characteristics of component hydrocarbons in lubricating base oils, the lower molecular weight components are expected to have the highest vapour pressures and water solubilities, and the lowest partition coefficients. These factors enhance the potential for widespread distribution in the environment. To gain an understanding of the potential transport and distribution of lubricating base oil components, the EQC (Equilibrium Criterion) model was used to characterize the environmental distribution of different C15 compounds representing different structures found in lube oils (e.g., paraffins, naphthenes, and aromatics). The modelling found partitioning to soil or air is the ultimate fate of these C15 compounds. Aromatic compounds partition principally to soil. Linear paraffins partition mostly to soil, while

branching appears to allow greater distribution to air. Naphthenes distribute to both soil and air, with increasing proportions in soil for components with the greater number of ring structures. Because the modelling does not take into account degradation factors, levels modelled in the atmosphere are likely overstated in light of the tendency for indirect photodegradation to occur.

Biodegradation: The extent of biodegradation measured for a particular lubricating oil basestock is dependent not only on the procedure used but also on how the sample is presented in the biodegradation test. Lubricant base oils typically are not readily biodegradable in standard 28-day tests. However, since the oils consist primarily of hydrocarbons that are ultimately assimilated by microorganisms, and therefore inherently biodegradable. Twenty-eight biodegradability studies have been reported for a variety of lubricating base oils. Based on the results of ultimate biodegradability tests using modified Sturm and manometric respirometry testing the base oils are expected to be, for the most part, inherently biodegradable. Biodegradation rates found using the modified Sturm procedure ranged from 1.5 to 29%. Results from the manometric respirometry tests on similar materials showed biodegradation rates from 31 to 50%. Biodegradation rates measured in 21-day CEC tests for similar materials ranged from 13 to 79%.

Ecotoxicity:

Numerous acute studies covering fish, invertebrates, and algae have been conducted to assess the ecotoxicity of various lubricating base oils. None of these studies have shown evidence of acute toxicity to aquatic organisms. Eight, 7-day exposure studies using rainbow trout failed to demonstrate toxicity when tested up to the maximum concentration of 1000 mg/L applied as dispersions. Three, 96-hour tests with rainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fainbow trout also failed to show any toxic effects when tested up to 1000 mg/L applied as dispersions. Similarly, three 96-hour tests with fathead minnows at a maximum test concentration of 1000 mg/L water accommodated fractions (WAF) showed no adverse effects. Two species of aquatic invertebrates (Daphnia magna and Gammarus sp.) were exposed to WAF solutions up to 10,000 mg/L for 48 and 96-hours, respectively, with no adverse effects being observed. Four-day exposures of the freshwater green alga (Scenedesmus subspicatus) to 500 mg/L WAF solutions failed to show adverse effects on growth rate and algal cell densities in four studies Multiple chronic ecotoxicity studies have shown no adverse effects to daphnid survival or reproduction. In 10 of 11 chronic studies, daphnids were exposed for 21 days to WAF preparations of lubricating base oils with no ill effects on survival or reproduction at the maximum concentration of 1000 mg/L. One test detected a reduction in reproduction at 1000 mg/L. Additional data support findings of no chronic toxicity to aquatic invertebrates and fish. No observed effect levels ranged from 550 to 5,000 mg/L when tested as either dispersions or WAFs.

The data described above are supported by studies on a homologous series of alkanes. The author concluded that the water solubility of carbon chains .C10 is too limited to elicit acute toxicity. This also was shown for alkylbenzene compounds having carbon numbers .C15. Since base oils consist of carbon compounds of C15 to C50, component hydrocarbons that are of acute toxicological concern are, for the most part, absent in these materials. Similarly, due to their low solubility, the alkylated two to three ring polyaromatic components in base oils are not expected to cause acute or chronic toxicity. This lack of toxicity is borne out in the results of the reported studies.

The effects of crude and refined oils on organisms found in fresh and sea water ha been extensively reviewed.

sea water. Where spillages occur the non-mobile species suffer the greatest mortality, whereas fish species can often escape from the affected region. The extent of the initial mortality depends on the chemical nature of the oil, the location, and the physical conditions, particularly the temperature and wind velocity. Most affected freshwater and marine communities recover from the effects of an oil spill within a year. The occurrence of biogenic hydrocarbons in the world's oceans is well recorded. They have the characteristic isoprenoid structure, and measurements made in water columns indicate a background concentration of 1.0 to 10 ul/l. The higher molecular weight materials are dispersed as particles, with the highest concentrations of about 20 ul/l occurring in the top 3 mm layer of water.

A wide variation in the response of organisms to oil exposures has been noted. The larvae of fish and crustaceans appear to be most susceptible to the water-soluble fraction of crude oil. Exposures of plankton and algae have indicated that certain species of diatoms and green algae are inhibited, whereas microflagellates are not. For the most part, molluscs and most intertidal worm species appear to be tolerant of oil contamination.

For propane:

Environmental Fate

Terrestrial fate:: An estimated Koc value of 460 determined from a log Kow of 2.36 indicates that propane is expected to have moderate mobility in soil. Volatilisation of propane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapor pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Propane is expected to volatilise from dry soil surfaces based upon its vapor pressure. Using cell suspensions of microorganisms isolated from soil and water, propane was oxidised to acetone within 24 hours, suggesting that biodegradation may be an important fate process in soil and sediment.

Aquatic fate: The estimated Koc value indicates that propane is expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant. Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. An estimated BCF of 13.1 using log Kow suggests the potential for bioconcentration in aquatic organisms is low. After 192 hr, the trace concentration of propane contained in gasoline remained unchanged for both a sterile control and a mixed culture sample collected from ground water contaminated with gasoline. This indicates that biodegradation may not be an important fate process in water.

Atmospheric fate:: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days, calculated from its rate constant of 1.15x10-12 cu cm/molecule-sec at 25 deg C. Propane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil Persistence: Air		
	No Data available for all ingredients No Data available for all ingredients		
Bioaccumulative potential			
Ingredient	Bioaccumulation		
	No Data available for all ingredients		
Mobility in soil			

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods		
Product / Packaging disposal	 DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Allow small quantities to evaporate. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site. 	

SECTION 14 TRANSPORT INFORMATION

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	950			
UN proper shipping name	ROSOLS			
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions63 190 277 327 344 381Limited quantity1000ml			

Air transport (ICAO-IATA / DGR)

UN number	1950				
UN proper shipping name	Aerosols, flammable	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L			
Packing group	Not Applicable	Not Applicable			
Environmental hazard	Not Applicable				
Special precautions for user	Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo				

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS NumberF-D , S-USpecial provisions63 190 277 327 344 381 959Limited Quantities1000 ml		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

MINERAL OIL IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC	;
Monographs	

LPG (LIQUEFIED PETROLEUM GAS) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (LPG (liquefied petroleum gas))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	01/11/2009

SDS Version Summary

Version	Issue Date	Sections Updated	
9.1.1.1	05/09/2017	Fire Fighter (fire/explosion hazard), Physical Properties	
11.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.