CRC Industries (CRC Industries New Zealand)

Chemwatch: 4818-16 Version No: 8.1.1.1

Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	CRC 3020 Lanocote Aerosol (NZ)
Synonyms	Not Available
Proper shipping name	AEROSOLS
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Lubricant and corrosion protection. Application is by spray atomisation from a hand held aerosol pack
--------------------------	--

Details of the supplier of the safety data sheet

Registered company name	CRC Industries (CRC Industries New Zealand)
Address	10 Highbrook Drive East Tamaki Auckland New Zealand
Telephone	+64 9 272 2700
Fax	+64 9 274 9696
Website	www.crc.co.nz
Email	customerservices@crc.co.nz

Emergency telephone number

Association / Organisation	CRC Industries (CRC Industries New Zealand)	
Emergency telephone numbers	NZ Poisons Centre 0800 POISON (0800 764 766)	
Other emergency telephone numbers	111 (NZ Emergency Services)	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification ^[1]	Flammable Aerosols Category 1, Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
abel elements		

Hazard pictogram(s)

P271

P261

Pressurized container: Do not pierce or burn, even after use.

Use only outdoors or in a well-ventilated area.

Avoid breathing mist/vapours/spray.

SIGNAL WORD	DANGER	
Hazard statement(s)		
H222	Extremely flammable aerosol.	
H315	Causes skin irritation.	
H336	May cause drowsiness or dizziness.	
H304	May be fatal if swallowed and enters airways.	
AUH044	Risk of explosion if heated under confinement.	
Precautionary statement(s) Pre	vention	
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P211	Do not spray on an open flame or other ignition source.	
P251	Pressurized container: Do not pierce or burn, even after use.	

Chemwatch Hazard Alert Code: 4

Issue Date: 01/11/2019

Print Date: 03/04/2020

L.GHS.AUS.EN

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

	•
P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P321	Specific treatment (see advice on this label).
P331	Do NOT induce vomiting.
P362	Take off contaminated clothing and wash before reuse.
P312	Call a POISON CENTER or doctor/physician if you feel unwell.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-47-8	30-60	distillates, petroleum, light, hydrotreated
8006-54-0	10-30	lanolin
68476-85-7.	30-60	LPG (liquefied petroleum gas)

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Avoid giving milk or oils. Avoid giving alcohol. Not considered a normal route of entry.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- ▶ Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] Treat symptomatically.

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2 LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result		
Advice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. 		
HAZCHEM	Not Applicable		

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and sea in labelled drums for disposal. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs.
---------------	---

	► Use in a well-ventilated area.
	Prevent concentration in hollows and sumps.
	DO NOT enter confined spaces until atmosphere has been checked.
	Avoid smoking, naked lights or ignition sources.
	Avoid contact with incompatible materials.
	When handling, DO NOT eat, drink or smoke.
	DO NOT incinerate or puncture aerosol cans.
	DO NOT spray directly on humans, exposed food or food utensils.
	Avoid physical damage to containers.
	Always wash hands with soap and water after handling.
	Work clothes should be laundered separately.
	Use good occupational work practice.
	Observe manufacturer's storage and handling recommendations contained within this SDS.
	Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
	Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
	Store in original containers in approved flammable liquid storage area.
	DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
	No smoking, naked lights, heat or ignition sources.
	Keep containers securely sealed. Contents under pressure.
Other information	Store away from incompatible materials.
other mormation	Store in a cool, dry, well ventilated area.
	Avoid storage at temperatures higher than 40 deg C.
	► Store in an upright position.
	Protect containers against physical damage.
	Check regularly for spills and leaks.
	Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	distillates, petroleum, light, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
distillates, petroleum, light, hydrotreated	Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7		140 mg/m3	1,500 mg/m3	8,900 mg/m3
LPG (liquefied petroleum gas)	Liquified petroleum gas; (L.P.G.)		65,000 ppm	2.30E+05 ppm	4.00E+05 ppm
Ingredient	Original IDLH	Revised IDLH			
distillates, petroleum, light, hydrotreated	2,500 mg/m3	Not Available			
lanolin	Not Available	Not Available			
LPG (liquefied petroleum gas)	2,000 ppm	Not Available			

MATERIAL DATA

for benzene

Odour Threshold Value: 34 ppm (detection), 97 ppm (recognition)

NOTE: Detector tubes for benzene, measuring in excess of 0.5 ppm, are commercially available. The relative quality of epidemiological data and quantitative health risk assessments related to documented and theoretical leukaemic deaths constitute the basis of the TLV-recommendation.

One study [Dow Chemical] demonstrates a significant fourfold increase in myelogenous leukaemia for workers exposed to average benzene concentrations of about 5 ppm for an average of 9 years and that 2 out of four individuals in the study who died from leukaemia were characterised as having been exposed to average benzene levels below 2 ppm. Based on such findings the estimated risk of leukaemia in workers exposed at daily benzene concentrations of 10 ppm for 40 years is 155 times that of unexposed workers; at 1 ppm the risk falls to 1.7 times whilst at 0.1 ppm the risk is about the same in the two groups. A revision of the TLV-TWA to 0.1 ppm was proposed in 1990 but this has been revised upwards as result of industry initiatives.

Typical toxicities displayed following inhalation:

- At 25 ppm (8 hours): no effect
- 50-150 ppm: signs of intoxication within 5 hours
- ▶ 500-1500 ppm: signs of intoxication within 1 hour
- ▶ 7500 ppm: severe intoxication within 30-60 minutes
- ▶ 20000 ppm: fatal within 5-10 minutes

Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. Some surveillance should emphasise (i) demography, occupational and medical history and health advice (ii) baseline blood sample for haematological profile (iii) records of personal exposure. Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate. Sweden recommends hexane type limits of 100 ppm and heptane and octane type limits of 300 ppm. Germany does not assign a value because of the widely differing compositions and resultant differences in toxic properties.

Odour Safety Factor (OSF) OSF=0.042 (gasoline) for kerosene CAS 8008-20-6 TLV TWA: 100 mg/m3 as total hydrocarbon vapour Skin A3 OEL TWA: 14 ppm, 100 mg/m3 [NIOSH, 1985] REL TWA: 150 ppm [Shell] CEL TWA: 300 ppm, 900 mg/m3 (CEL = Chemwatch Exposure Limit)

for petroleum distillates:

CEL TWA: 500 ppm, 2000 mg/m3 (compare OSHA TWA) (CEL = Chemwatch Exposure Limit)

1

NOTE H: Special requirements exist in relation to classification and labelling of this substance. This note applies to certain coal- and oil -derived substances and to certain entries for groups of substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

	Engineering controls are used to remove a nazard or place a barrier between the worker and the nazard, well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to			
	Provide adequate protection. Provide adequate ventilation in warehouse or closed storage Air contaminants generated in the workplace possess varying circulating air required to effectively remove the contaminant.	areas. J "escape" velocities which, in turn, determine the "c	apture velocities" of fresh	
	Type of Contaminant:		Speed:	
Appropriate engineering	aerosols, (released at low velocity into zone of active gene	ration)	0.5-1 m/s	
controls	direct spray, spray painting in shallow booths, gas discharg Within each range the appropriate value depends on:	e (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity		
	3: Intermittent, low production.	3: High production, heavy use		
	4: Large hood or large air mass in motion	4: Small hood-local control only		
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.			
Personal protection				
Eye and face protection	No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE: For potentially moderate or heavy exposures: Safety glasses with side shields. NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.		hem.	
Skin protection	See Hand protection below			
Hands/feet protection	 No special equipment needed when handling small quant OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber g For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety for 	tities. loves. otwear.		
Body protection	See Other protection below			
Other protection	 No special equipment needed when handling small quantities OTHERWISE: Overalls. Skin cleansing cream. Eyewash unit. Do not spray on hot surfaces. The clothing worn by process operators insulated from exignition energies for various flammable gas-air mixtures. Avoid dangerous levels of charge by ensuring a low resis BRETHERICK: Handbook of Reactive Chemical Hazards. 	s. arth may develop static charges far higher (up to 10 This holds true for a wide range of clothing material tivity of the surface material worn outermost.	0 times) than the minimum s including cotton.	

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Thick amber coating, highly flammable aerosol; not miscible with Supplied as an aerosol pack. Contents under PRESSURE . Con	water. tains highly flammable hydrocarbon p	ropellant.
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	-81 (propellant)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular

	 system. Common, generalised symptoms associated with toxic gas inhalation include: central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest; cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal nain
	Inhalation hazard is increased at higher temperatures. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
	Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination WARNING :Intentional misuse by concentrating/inhaling contents may be lethal.
	High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Hydrocarbons may penduce traumatic injury. Central nervous system (CNS) depression may be evident early. Symptoms of moderate poisoning may include giddiness, headache, dizziness and nausea. Serious poisonings may result in respiratory depression and may be fatal.
	The paraffin gases C1-4 are practically non-toxic below their lower flammability limits (18000-50000 ppm). Above this level, incidental effects include CNS depression and irritation but these are reversible upon cessation of the exposure. The C3 and iso-C5 hydrocarbons show increasing narcotic properties; branching of the chain also enhances the effect. The C4 hydrocarbons appear to be more highly neurotoxic than the C3 and C5 members. Several fatalities due to voluntary inhalation of butane have been reported, possibly due to central, respiratory and circulatory effects resulting from anaesthesia, laryngeal oedema, chemical pneumonia or the combined effects of cardiac toxicity and increased sympathomimetic effects. Inhalation of petroleum gases may produce narcosis, due in part to olefinic impurities. Displacement of oxygen in the air may cyanosis. If present in sufficient quantity these gases may reduce the oxygen level to below 18% producing asphyxiation. Symptoms include rapid respiration, mental dullness, lack of coordination, poor judgement, pausea and womiting. The onset of cyanosis may lead to upconsciousness and death
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage. Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis
Skin Contact	 The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition
Eye	Limited evidence or practical experience suggests, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant on inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure may cause severe inflammation (similar to windburn) characterised by a temporary redness of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures
Chronic	Prolonged or repeated skin contact may produce initiation and loomyination. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Principal route of occupational exposure to the gas is by inhalation.
Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins), and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure
levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and
Animal studies:
No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (parathinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar
naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a
variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure.
Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

CRC 3020 Lanocote Aerosol	TOXICITY	IRRITATION	
(NZ)	Not Available	Not Available	
dictillatos patroloum light	TOXICITY	IRRITATION	
bydrotreated	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
nyarotreatea	Oral (rat) LD50: >5000 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]	
		IDDITATION	
lanolin	TOXICITY	IRRITATION	
lanoim	Oral (rat) LD50: >5000 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
LPG (liquefied petroleum gas)	Not Available	Not Available	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2 * Value obtained from manufacturer's SDS. Unless otherwise		

 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

CRC 3020 Lanocote Aerosol (NZ)	for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity : Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kichey tumours which are not considered relevant to humans. Mutagenicity : There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results in mutagenicity assays. Reproductive Toxicity : Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. Human Effects : Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal meduliary tububes

DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED	Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons ar oute to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.
LPG (LIQUEFIED PETROLEUM GAS)	for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mamulian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LCS0, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas. All Hydrocarbon Gases Category members contain primarily hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricaing oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members Acute toxicity: No acute toxicity LC50 values have been derived for the C1 - C4 and C5 - C6 hydrocarbon (HC) fractions because no motality was observed at the highest exposure levels tested (- 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is: C5-C6 HCS (LC50 - 1063 ppm) > C1-C4 HCS (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Repeat dose toxicity : With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents from most to least toxic is: B
CRC 3020 Lanocote Aerosol (NZ) & DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED & LANOLIN & LPG (LIQUEFIED PETROLEUM GAS)	No significant acute toxicological data identified in literature search.
CRC 3020 Lanocote Aerosol (NZ) & DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED	For "kerosenes" Acute toxicity: Cral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation. An eye irritation in trabbits of straight run kerosene (CAS No. 8008-20-6) produced Tmoderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation. An eye irritation in trabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved. Straight run kerosenes CAS No. 8008-20-6), uet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerose

	taken at necropsy found proliferative inflammatory charchanges were, in the majority of animals, accompanie testicular changes (multifocal or diffuse tubular hypopichanges. In a different study, hydrodesulfurised kerosene was thaplied 5x/week to the skin of male and female rats at there were no treatment-related clinical signs during thany substance-related effects. Opthalomological examelated effects on growth rates, hematological or clinical tissues from animals surviving to termination found not inflammatory changes in the skin. A hydrodesulfurised middle distillate (CAS no. 64742-rats were exposed to a nominal concentration of 25mg consecutive weeks. There were no treatment-related hematological or clinical chemistry determinations. Mile Carcinogenicity: In addition to the repeat-dose studik kerosenes or jet fuels. Following the discovery that hystudies, the role of dermal irritation in tumor formation than initiator, and this promotion required prolonged did not cause significant skin irritation (eg., dilution with that the reduced irritation seen with samples in minera dermal tumorigenicity of a hydrodesulfurised kerosene However, the author also concluded that subacute infl A sample of a hydrodesulfurised kerosene has been to effected by exposure to the kerosene. The study's aut activity. In-Vitro (Genotoxicity): The potential <i>in vitro</i> genotox assays on two kerosene samples and a sample of Jet kerosene and jet fuel samples in mouse lymphoma assays on two kerosene and jet A samples produced ne as adoorised kerosene and Jet A samples produced ne activity. Either 0, 20, body weight equivalents were 0, 165, 330 and 494 mg of gestation. There were no treatment-related effects or related effects on any of the reproductive/developmental toxicity screening studies on a kerosene ither study. While kerosene produced no clinical sign lasted from 2 to 8 days with most animals showing sig consumption. Examination of forspring at delivery did abnormalities. The sex ratio of the fituses was al	anges in the treated skin of all male ar d by an increase in granulopoiesis of lasia) that were considered by the stu ested in a thirteen-week dermal study t dose levels of 165, 330 and 495 mg/ he study. Screening of all animals usin initation of all animals also found no tr all chemical values, or absolute or reli- to treatment-related changes, with the 80-9) has also been tested in a four w g/m3 kerosene. Exposures were for a effects on clinical condition, growth ra croscopic examination found no treatr sed siccussed above, a number of derr ydrodesulfurised (HDS) kerosene cau was extensively studied. HDS kerose ermal irritation . If the equivalent dose an a mineral oil) no skin tumors occurre al oil was not due to decreased skin pl e was studied and the author conclude lammation did not appear to be a sign ested in an initiation-promotion assay hors concluded that the kerosene was kicities of kerosene and jet fuel have b . A produced negative results with/with at activation) except for one positive a usays produced a mixture of negative for the studies have been done on a variety of 1 n vivo bone marrow cytogenetic tests and negative results in females when t gative results in dominant lethal assay ed only to mice via inhalation. 40 or 60% (v/v) kerosene in mineral of ylkg. Test material was applied daily, 7 on mortality and no clinical signs of to tatal parameters. The authors conclude under the treatment conditions of the ne and a sample of Jet A have been r is, the jet fuel produced a dose-related not reveal any treatment-related abno naffected by treatment with either of th	In the female animals in the high dose group. These the bone marrow. Four of six high dose males had dy authors to be secondary to the skin and/or weight using Sprague-Dawley rats. Test material was kg. Aside from skin irritation at the site of application, ig a functional observation battery (FOB) did not find eatment-related effects. There were no treatment- tative organ weights. Microscopic examination of exception of a minimal degree of a proliferative and week inhalation study . In the study, Sprague-Dawley oproximately 6 hr/day, five days each week for four te, absolute or relative organ weights, or any of the ment-related changes observed in any tissues. anal carcinogenicity studies have been performed on sed skin tumors in lifetime mouse skin painting me proved to be a mouse skin tumor promoter rather of kerosene was applied to the skin in manner that ed. Dermal bioavailability studies in mice confirmed anetration . The effect of chronic acanthosis on the ed that hyperplasia was essential for tumor promotion. ificant factor in male CD-1 mice . Animal survivals were not s not an initiator but it did show tumor promoting ween evaluated in a variety of studies. Standard Ames nout activation . Modified Ames assays on four ssay that occurred with activation . The testing of five and positive results . Hydrodesulfurized kerosene in Sprague-Dawley rats . One of the kerosene ested in a sister chromatid exchange assay . Both ys. The kerosene was administered to both mice and oil was applied to the skin of the rats. The dose per r days/week from 14 days premating through 20 days kicity were observed. There were no compound- id that the no observable effect level (NOEL) for study was 494 mg/kg/day. eported . There were no compound-related deaths in d eye irritation (or infection). The signs of irritation rialities, soft tissue changes or skeletal the compounds.
A suite Toutette		Operation of the second state	v
Acute Toxicity	A	Carcinogenicity	A
Skin Irritation/Corrosion	¥	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

Aspiration Hazard

Legend:

~

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

×

Toxicity

CRC 3020 Lanocote Aerosol (NZ)	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>1-mg/L	2
distillates, petroleum, light, hydrotreated	EC50	48	Crustacea	>1-mg/L	2
	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	3072	Fish	=1mg/L	1
lanolin	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>100mg/L	2
	EC50	48	Crustacea	>100mg/L	2
	EC50	72	Algae or other aquatic plants	>100mg/L	2
	NOEC	72	Algae or other aquatic plants	100mg/L	2

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
LPG (liquefied petroleum gas)	LC50	96	Fish	24.11mg/L	2
	EC50	96	Algae or other aquatic plants	7.71mg/L	2
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vender Data				

For hydrocarbons:

Environmental fate:

The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm sea conditions. This is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals.

Some hydrocarbon will become associated with benthic sediments, and it is likely to be spread over a fairly wide area of sea floor. Marine sediments may be either aerobic or anaerobic. The material, in probability, is biodegradable, under aerobic conditions (isomerised olefins and alkenes show variable results). Evidence also suggests that the hydrocarbons may be degradable under anaerobic conditions although such degradation in benthic sediments may be a relatively slow process.

Under aerobic conditions hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes they produce water, methane and carbon dioxide.

Alkenes have low log octanol/water partition coefficients (Kow) of about 1 and estimated bioconcentration factors (BCF) of about 10; aromatics have intermediate values (log Kow values of 2-3 and BCF values of 20-200), while C5 and greater alkanes have fairly high values (log Kow values of about 3-4.5 and BCF values of 100-1,500

The estimated volatilisation half-lives for alkanes and benzene, toluene, ethylbenzene, xylene (BTEX) components were predicted as 7 days in ponds, 1.5 days in rivers, and 6 days in lakes. The volatilisation rate of naphthalene and its substituted derivatives were estimated to be slower.

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media.

The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialised hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denature increases, biological activity tends to increase up to a temperature where enzyme

Atmospheric fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Ecotoxicity:

Hydrocarbons are hydrophobic (high log Kow and low water solubility). Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. The hydrophobicity increases and water solubility decreases with increasing carbon number for a particular class of hydrocarbon. Substances with the same carbon number show increased hydrophobicity and decreased solubility with increasing saturation. Quantitative structure activity relationships (QSAR), relating both solubility and toxicity to Kow predict that the water solubility of single chemical substances decreases more rapidly with increasing Kow than does the acute toxicity.

Based on test results, as well as theoretical considerations, the potential for bioaccumulation may be high. Toxic effects are often observed in species such as blue mussel, daphnia, freshwater green algae, marine copepods and amphipods.

The values of log Kow for individual hydrocarbons increase with increasing carbon number within homologous series of generic types. Quantitative structure activity relationships (QSAR), relating log Kow values of single hydrocarbons to toxicity, show that water solubility decreases more rapidly with increasing Kow than does the concentration causing effects. This relationship varies somewhat with species of hydrocarbon, but it follows that there is a log Kow limit for hydrocarbons, above which, they will not exhibit acute toxicity; this limit is at a log Kow value of about 4 to 5. It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity.

QSAR equations for chronic toxicity also suggest that there should be a point where hydrocarbons with high log Kow values become so insoluble in water that they will not cause chronic toxicity, that is, that there is also a solubility cut-off for chronic toxicity. Thus, paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no measurable chronic toxicity. Experimental support for this cut-off is demonstrated by chronic toxicity studies on lubricant base oils and one "heavy" solvent grade (substances composed of paraffins of C20 and greater) which show no effects after exposures to concentrations well above solubility.

The initial criteria for classification of substances as dangerous to the aquatic environment are based upon acute toxicity data in fish, daphnids and algae. However, for substances that have low solubility and show no acute toxicity, the possibility of a long-term or chronic hazard to the environment is recognised in the R53 phrase or so-called "safety net". The R53 assignment for possible long-term harm is a surrogate for chronic toxicity test results and is triggered by substances that are both bioaccumulative and persistent. The indicators of bioaccumulation and persistence are taken as a BCF > 100 (or log Kow > 3 if no BCF data) and lack of ready biodegradability. For low solubility substances which have direct chronic toxicity at 1 mg/L or higher, these data take precedence such that no classification for long term toxicity is required. Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.).

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients
Bioaccumulative potential		
Ingredient	Bioaccumulation	
distillates, petroleum, light, hydrotreated	LOW (BCF = 159)	
Mobility in soil		
Ingredient	Mobility	
	No Data available for all ingredients	

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.

▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

Continued...

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions63 190 277 327 344 381Limited quantity1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950	1950		
UN proper shipping name	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L		
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing In Cargo Only Maximum Passenger and Cargo	Astructions Qty / Pack Packing Instructions	A145 A167 A802 203 150 kg 203	
	Passenger and Cargo Maximum Qty / Pack		75 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y203	
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G	

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS NumberF-D , S-USpecial provisions63 190 277 327 344 381 959Limited Quantities1000 ml		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 LANOLIN IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) Australia Inventory of Chemical Substances (AICS) Australia Inventory of Chemical Substances (AICS)

LPG (LIQUEFIED PETROLEUM GAS) IS FOUND ON THE FOLLOWING REGULATORY LISTS

 Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

 Australia Inventory of Chemical Substances (AICS)
 Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (lanolin; distillates, petroleum, light, hydrotreated; LPG (liquefied petroleum gas))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	01/11/2019
Initial Date	01/11/2009

SDS Version Summary

Version	Issue Date	Sections Updated
7.1.1.1	18/06/2018	Physical Properties
8.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit_o IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL: No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LODE Limit of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors
- BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

end of SDS